检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
训练的数据集预处理说明 以 llama2-13b 举例,运行:0_pl_pretrain_13b.sh 训练脚本后,脚本检查是否已经完成数据集预处理的过程。 如果已完成数据集预处理,则直接执行预训练任务。如果未进行数据集预处理,则会自动执行 scripts/llama2/1_preprocess_data.sh
断点续训和故障快恢说明 相同点 断点续训(Checkpointing)和故障快恢都是指训练中断后可从训练中一定间隔(${save-interval})保存的模型(包括模型参数、优化器状态、训练迭代次数等)继续训练恢复,而不需要从头开始。 不同点 断点续训:可指定加载训练过程中生成的
断点续训和故障快恢说明 相同点 断点续训(Checkpointing)和故障快恢都是指训练中断后可从训练中一定间隔(${save-interval})保存的模型(包括模型参数、优化器状态、训练迭代次数等)继续训练恢复,而不需要从头开始。 不同点 断点续训:可指定加载训练过程中生成的
导出ModelArts数据集中的数据到OBS 针对数据集中的数据,用户可以选中部分数据或者通过条件筛选出需要的数据,当需要将数据集中的数据存储至OBS用于后续导出使用时,可通过此种方式导出成新的数据集。用户可以通过任务历史查看数据导出的历史记录。 目前只有“图像分类”、“物体检测”
Notebook中快速使用MoXing 本文档介绍如何在ModelArts中调用MoXing Framework接口。 进入ModelArts,创建Notebook实例 登录ModelArts管理控制台,在左侧菜单栏中选择“开发空间>Notebook”,进入“Notebook”管理页面
自定义镜像训练作业配置节点间SSH免密互信 当用户使用基于MPI和Horovod框架的自定义镜像进行分布式训练时,需配置训练作业节点间SSH免密互信,否则训练会失败。 配置节点间SSH免密互信涉及代码适配和训练作业参数配置,本文提供了一个操作示例。 准备一个预装OpenSSH的自定义镜像
ModelArts中的作业为什么一直处于等待中? 当前训练任务排队的逻辑是先进先出,前面的任务没运行完后面的任务不会运行,有可能会造成小任务被“饿死”,需要用户注意。 饿死指的是前面的任务被一个大的任务堵着(例如是64卡),需要等空闲64卡这个任务才能运行,64卡的任务后面跟着1卡的
准备数据 本教程使用到的训练数据集是Alpaca数据集。您也可以自行准备数据集。 Alpaca数据集 本教程使用Alpaca数据集,数据集的介绍及下载链接如下。 Alpaca数据集是由OpenAI的text-davinci-003引擎生成的包含52k条指令和演示的数据集。这些指令数据可以用来对语言模型进行指令调优
准备数据 本教程使用到的训练数据集是Alpaca数据集。您也可以自行准备数据集。 数据集下载 本教程使用Alpaca数据集,数据集的介绍及下载链接如下。 Alpaca数据集是由OpenAI的text-davinci-003引擎生成的包含52k条指令和演示的数据集。这些指令数据可以用来对语言模型进行指令调优
训练启动脚本说明和参数配置 本代码包中集成了不同模型(包括llama2、llama3、Qwen、Qwen1.5 ......)的训练脚本,并可通过统一的训练脚本一键式运行。训练脚本可判断是否完成预处理后的数据和权重转换的模型。如果未完成,则执行脚本,自动完成数据预处理和权重转换的过程
执行SFT全参微调训练任务 步骤一 上传训练权重文件和数据集 如果在准备代码和数据阶段已经上传权重文件和数据集到容器中,可以忽略此步骤。 如果未上传训练权重文件和数据集到容器中,具体参考上传代码和权重文件到工作环境和上传数据到指定目录章节完成。训练脚本中会自动执行训练前的权重转换操作和数据处理操作
场景介绍 ChatGLM3-6B大模型是一个包含多种参数数量模型的语言模型。 方案概览 本文档以ChatGLM3-6B(以下简称GLM3-6B)为例,利用训练框架Pytorch_npu+华为自研Ascend Snt9b硬件,为用户提供了开箱即用的预训练和全量微调方案。 本方案目前配套的是
Function Calling介绍 使用场景 大语言模型的Function Calling能力允许模型调用外部函数或服务,以扩展其自身的能力,执行它本身无法完成的任务。以下是一些Function Calling的使用场景: 表1 Function Calling使用场景说明 使用场景
在ModelArts上训练模型如何配置输入输出数据? ModelArts支持用户上传自定义算法创建训练作业。上传自定义算法前,请完成创建算法并上传至OBS桶。创建算法请参考开发用于预置框架训练的代码。创建训练作业请参考创建训练作业指导。 解析输入路径参数、输出路径参数 运行在ModelArts
管理AI Gallery数据集 编辑数据集介绍 资产发布上架后,准确、完整的资产介绍有助于提升资产的排序位置和访问量,能更好的支撑用户使用该资产。 在数据集详情页,选择“数据集介绍”页签,单击右侧“编辑介绍”。 编辑数据集基础设置和数据集描述。 表1 数据集介绍的参数说明 参数名称
附录:训练常见问题 问题1:在训练过程中遇到NPU out of memory 解决方法: 容器内执行以下命令,指定NPU内存分配策略的环境变量,开启动态内存分配,即在需要时动态分配内存,可以提高内存利用率,减少OOM错误的发生。 export PYTORCH_NPU_ALLOC_CONF
创建Notebook实例后无法打开页面,如何处理? 如果您在创建Notebook实例之后,打开Notebook时,因报错导致无法打开页面,您可以根据以下对应的错误码来排查解决。 打开Notebook显示黑屏 Notebook打开后黑屏,由于代理问题导致,切换代理。 打开Notebook
(可选)本地安装ma-cli 使用场景 本文以Windows系统为例,介绍如何在Windows环境中安装ma-cli。 Step1:安装ModelArts SDK 参考本地安装ModelArts SDK完成SDK的安装。 Step2:下载ma-cli 下载ma-cli软件包。 完成软件包签名校验
准备数据 本教程使用到的训练数据集是Alpaca数据集。您也可以自行准备数据集。 Alpaca数据集 本教程使用Alpaca数据集,数据集的介绍及下载链接如下。 Alpaca数据集是由OpenAI的text-davinci-003引擎生成的包含52k条指令和演示的数据集。这些指令数据可以用来对语言模型进行指令调优
执行SFT全参微调训练任务 步骤一 上传训练权重文件和数据集 如果在准备代码和数据阶段已经上传权重文件和数据集到容器中,可以忽略此步骤。 如果未上传训练权重文件和数据集到容器中,具体参考上传代码和权重文件到工作环境和上传数据到指定目录章节完成。训练脚本中会自动执行训练前的权重转换操作和数据处理操作