检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
在forward阶段的第一个输入存在偏差,追溯输入来源发现是torch.randint()函数在device侧随机初始化(下图第214行),由于device侧随机性无法通过seed等自动化方式固定,先通过切换CPU侧计算初始化之后再切回device侧。在train.py中做如下图第215行代码修改。 重新训练D
file or directory” 3.“Make sure the device specification refers to a valid device, The requested device appeares to be a GPU,but CUDA is not
必须修改。指定输出目录。训练过程中生成的模型参数和日志文件将保存在这个目录下。用户根据自己实际要求适配。 per_device_train_batch_size 1 指定每个设备的训练批次大小 gradient_accumulation_steps 8 指定梯度累积的步数,这可以增加批
导入模型后部署服务,提示磁盘不足 问题现象 用户在导入模型后,部署服务时,提示磁盘空间不足:“No space left on device”。 原因分析 ModelArts部署使用的是容器化部署,容器运行时有空间大小限制,当用户的模型文件或者其他自定义文件,系统文件超过Docker
推荐将旧版镜像切换为统一镜像,旧版镜像后续将会逐渐下线。 待下线的基本镜像不再维护。 统一镜像Runtime的命名规范:<AI引擎名字及版本> - <硬件及版本:cpu或cuda或cann> - <python版本> - <操作系统版本> - <CPU架构> 当前支持自定义模型启动命令,预置
的过程。 本文档主要介绍如何在ModelArts Standard上,利用训练框架PyTorch_npu+华为自研Ascend Snt9B硬件,完成SDXL Finetune训练。 获取软件和镜像 表1 获取软件和镜像 分类 名称 获取路径 插件代码包 AscendCloud-3rdAIGC-6
推荐将旧版镜像切换为统一镜像,旧版镜像后续将会逐渐下线。 待下线的基本镜像不再维护。 统一镜像Runtime的命名规范:<AI引擎名字及版本> - <硬件及版本:cpu或cuda或cann> - <python版本> - <操作系统版本> - <CPU架构> 表5 支持的常用引擎及其Runtime
id]-device-[device logic id].txt” device id为本次训练作业的NPU卡编号,取值单卡为0,8卡为0~7。 例如:Ascend规格为 8*Snt9时,device id取值为0~7;Ascend规格为 1*Snt9时,device id取值为0。
必须修改。指定输出目录。训练过程中生成的模型参数和日志文件将保存在这个目录下。用户根据自己实际要求适配。 per_device_train_batch_size 1 指定每个设备的训练批次大小 gradient_accumulation_steps 8 可修改。指定梯度累积的步数,这可
问题现象 训练作业运行出现如下报错: failed call to cuInit: CUDA_ERROR_NO_DEVICE: no CUDA-capable device is detected 原因分析 根据错误信息判断,报错原因为训练作业运行程序读取不到GPU。 处理方法 根
477163314819336", "", "0.0625", "TERMINATED", "0.0625", "tensor(0.0754, device='cuda:0', requires_grad=True)", "0.0625" ], [ "1", "True", "315", {
日志提示"No CUDA-capable device is detected" 日志提示“RuntimeError: connect() timed out” 日志提示“cuda runtime error (10) : invalid device ordinal at xxx” 日志提示“RuntimeError:
Object 部署信息,如表4所示。 labels Map<String,String> 标签信息。 flavor_type String 硬件类型。支持CPU,GPU,Ascend。 表4 provision字段数据结构说明 参数 参数类型 描述 type String 部署类型,当前仅支持Docker。
路径下。 ModelArts提供以下数据扩增算子: 表1 数据扩增算子介绍 算子 算子说明 高级 AddNoise 添加噪声,模拟常见采集设备在采集图片过程中可能会产生的噪声。 noise_type:添加噪声的分布类型,Gauss为高斯噪声,Laplace为拉普拉斯噪声,Pois
-Instruct" 2)如果量化Deepseek-V2-236B模型,请将num_gpus改为8; device_map = calculate_offload_device_map( MODEL_ID, reserve_for_hessians=True,
e-Instruct" 2)若量化Deepseek-V2-236B模型,请将num_gpus改为8; device_map = calculate_offload_device_map( MODEL_ID, reserve_for_hessians=True,
from_pretrained(model_id, device_map="auto", quantization_config=gptq_config) 您还可以使用save_pretrain()方法在本地保存您的量化模型。如果模型是用device_map参数量化的,请确保在保存之前将整个
CPU环境,调用Model.configure_tf_infer_environ(device_type="CPU")完成配置,环境中只需配置运行一次。 GPU环境,调用Model.configure_tf_infer_environ(device_type="GPU")完成配置,环境中只需配置运行一次。
费用账单 您可以在“费用中心 > 账单管理”查看资源的费用账单,以了解该资源在某个时间段的使用量和计费信息。 账单上报周期 包年/包月计费模式的资源完成支付后,会实时上报一条账单到计费系统进行结算。 按需计费模式的资源按照固定周期上报使用量到计费系统进行结算。按需计费模式产品根据
device = torch.device('cuda') model.load_state_dict(torch.load(model_path, map_location="cuda:0")) else: device = torch