检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
发挥盘古大模型的行业优势,提升业务效果。 最佳实践 提示词写作实践 从基模型训练出行业大模型 06 API 通过API文档的概述、NLP大模型API和科学计算大模型API的详细介绍,您将全面理解如何调用和集成盘古大模型的各类接口,确保在不同场景中灵活应用这些强大的模型能力,加速业务开发进程。
构建外,也可能会使用开源的数据集。数据版权功能主要用于记录和管理数据集的版权信息,确保数据的使用合法合规,并清晰地了解数据集的来源和相关的版权授权。通过填写这些信息,可以追溯数据的来源,明确数据使用的限制和许可,从而保护数据版权并避免版权纠纷。 图5 设置数据版权 单击页面右下角
返回一个资源特征与地址的列表用于用户终端(例如:浏览器)选择。 301 Moved Permanently 永久移动,请求的资源已被永久的移动到新的URI,返回信息会包括新的URI。 302 Found 资源被临时移动。 303 See Other 查看其他地址,使用GET和POST请求查看。
Service,CTS)是华为云安全解决方案中专业的日志审计服务,提供对各种云资源操作记录的收集、存储和查询功能,可用于支撑安全分析、合规审计、资源跟踪和问题定位等常见应用场景。 用户开通云审计服务并创建、配置追踪器后,CTS可记录用户使用盘古的管理事件和数据事件用于审计。 CTS的详细介绍和开通配置方法,请参见CTS快速入门。
filename 是 被标注文件的文件名。 size 是 表示图像的像素信息。 width:必选字段,图像的宽度。 height:必选字段,图像的高度。 depth:必选字段,图像的通道数。 图像的通道数是指图像中每个像素的颜色信息的维度。常用的RGB图像默认有3个通道。3通道表
Boolean 是否仅统计输入字符的Token数 true:仅统计输入字符串的Token数; false:统计输入字符串和推理过程产生字符的总Token数。 响应参数 表4 响应Body参数 参数 参数类型 描述 tokens List<String> 分解出的Token列表。 token_number
DELETE:请求服务器删除指定资源,如删除对象等。 HEAD:请求服务器资源头部。 PATCH:请求服务器更新资源的部分内容。当资源不存在的时候,PATCH可能会去创建一个新的资源。 在接口的URI部分,请求方法为“POST”,例如: POST https://{endpoint}/v1/{p
了Token计算器工具。Token计算器可以帮助用户在模型推理前评估文本的Token数量,提供费用预估,并优化数据预处理策略。 Token计算器 用户在部署服务的过程中,建议开启“安全护栏”功能,以保证内容的安全性。 父主题: 使用前必读
包年/包月和按需计费模式有什么区别 包年/包月和按需计费模式的区别如下: 包年/包月计费模式:包年/包月的计费模式是一种预付费方式,按订单的购买周期计费,适用于可预估资源使用周期的场景。 按需计费模式:按需付费是后付费方式,可以随时开通/关闭对应资源,支持秒级计费,系统会根据云服务器的实际使用情况每小时出账单,并从账户余额里扣款。
用、监管有力的制度,并加强对专项资金的监督和管理。严格控制专项资金的流向和使用范围,严禁有过度功能的行为,坚决杜绝虚假、虚报和恶意投资,建立完善的监督管理制度,加强随时的监督和核查,确保专项资金使用的规范化、严格化、透明化、便结算。”问题:在福田区社会建设专项资金的使用过程中,如
用任务的基础能力,但还没有针对特定的业务场景进行优化。预训练后的模型主要用于多个任务的底层支持。 通过使用海量的互联网文本语料对模型进行预训练,使模型理解人类语言的基本结构。 微调 关注专业性:微调是对预训练模型的参数进行调整,使其在特定任务中达到更高的精度和效果。微调的核心在于
t开发平台预置的Python解释器预置插件。 “Python解释器插件”能够执行用户输入的Python代码,并获取结果。此插件为应用提供了强大的计算、数据处理和分析功能,用户只需将其添加到应用中,即可扩展功能。 准备工作 请确保您有预置的NLP大模型,并已完成模型的部署操作,详见《用户指南》“开发盘古NLP大模型
Models)通常指的是具有海量参数和复杂结构的深度学习模型,广泛应用于自然语言处理(NLP)等领域。开发一个大模型的流程可以分为以下几个主要步骤: 数据集准备:大模型的性能往往依赖于大量的训练数据。因此,数据集准备是模型开发的第一步。首先,需要根据业务需求收集相关的原始数据,确保数据的覆盖面和多样性。例如
插件配置,对应查询需要运行时传值的参数。 响应参数 流式(Header中的stream参数为true) 状态码: 200 表5 流式输出的数据单元 参数 参数类型 描述 data String stream=true时,执行工作流的消息以流式形式返回。生成的内容以增量的方式逐步发送回来,每个
计算出来的最低值。 热身比例 热身比例是指在模型训练过程中逐渐增加学习率的过程。在训练的初始阶段,模型的权重通常是随机初始化的,此时模型的预测能力较弱。如果直接使用较大的学习率进行训练,可能会导致模型在初始阶段更新过快,从而影响模型的收敛。 为了解决这个问题,可以在训练的初始阶段
和大模型组件。 开始:工作流的入口组件,该组件的配置详见配置开始组件。 结束:输出工作流的执行结果,该组件的配置详见配置结束组件。 LLM:初始化完成的大模型节点,没有额外的Prompt配置,直接接受用户原始输入,并输出大模型执行后的原始输出,该组件的配置详见配置大模型组件。 用
强模型的泛化能力。取值范围:[0,1]。 给输入数据加噪音的尺度 给输入数据加噪音的尺度,定义了给输入数据加噪音的尺度。这个值越大,添加的噪音越强烈,模型的正则化效果越强,但同时也可能会降低模型的拟合能力。取值范围:[0,1]。 给输出数据加噪音的概率 给输出数据加噪音的概率,定