检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
配置知识 配置知识的步骤如下: 在“高级配置 > 知识”,单击“添加”。 在“添加知识”窗口,单击“点此上传”,上传知识文件。 图1 添加知识 上传完成后,单击“确定”。 在“高级配置”中,可查看上传成功的知识文件。 图2 知识上传成功 父主题: 手工编排Agent应用
使用API调用科学计算大模型 使用API调用科学计算大模型步骤如下: 登录ModelArts Studio大模型开发平台,进入所需空间。 单击左侧“模型开发 > 模型部署”。 若调用已部署的模型,单击状态为“运行中”的模型名称,在“详情”页签,可获取API的URL。 图1 获取已部署模型的调用路径
调用盘古NLP大模型API实现文本对话 场景描述 此示例演示了如何调用盘古NLP大模型API实现文本对话功能。您将学习如何通过API接口发送请求,传递对话输入,并接收模型生成的智能回复。通过这一过程,您可以快速集成NLP对话功能,使应用具备自然流畅的交互能力。 准备工作 调用盘古
创建并管理盘古工作空间 创建盘古工作空间 登录ModelArts Studio大模型开发平台首页。 在“我的空间”分页中,单击“创建空间”。 填写空间名称、描述,单击“确认”,完成空间的创建。 图1 创建空间 单击创建好的空间,进入ModelArts Studio大模型开发平台,
数据工程使用流程 高质量数据是推动大模型不断迭代和优化的根基,它的质量直接决定了模型的性能、泛化能力以及应用场景的适配性。只有通过系统化地准备和处理数据,才能提取出有价值的信息,从而更好地支持模型训练。因此,数据的采集、清洗、标注、评估、发布等环节,成为数据开发中不可或缺的重要步骤。
发布训练后的NLP大模型 NLP大模型训练完成后,需要执行发布操作,操作步骤如下: 在模型训练列表页面选择训练完成的任务,单击训练任务名称进去详情页。 在“训练结果”页面,单击“发布”。 图1 训练结果页面 填写资产名称、描述,选择对应的可见性,单击“确定”发布模型。 发布后的模型会作为资产同步显示在“空间资产
审核文本类数据集标注结果 创建数据集标注任务时,如果设置了启用标注审核,在完成标注后可以在“标注审核”页面审核标注结果。 对于审核不合格的数据可以填写不合格原因并驳回给标注员重新标注。创建标注任务时如果指定了审核人员,则审核人员可以审核数据集,管理员(主账号)可以对所有数据集进行审核。
审核视频类数据集标注结果 创建数据集标注任务时,如果设置了启用标注审核,在完成标注后可以在“标注审核”页面审核标注结果。 对于审核不合格的数据可以填写不合格原因并驳回给标注员重新标注。创建标注任务时如果指定了审核人员,则审核人员可以审核数据集,管理员(主账号)可以对所有数据集进行审核。
发布文本类数据集 原始数据集和加工后的数据集不可以直接用于模型训练,需要独立创建一个“发布数据集”。 文本类数据集支持发布的格式为: 默认格式:平台默认的格式。 盘古格式:训练盘古大模型时,需要将数据集格式发布为“盘古格式”。 自定义格式:文本类数据集可以使用自定义脚本进行数据格式转换。
请求URI 服务的请求URI即API服务的终端地址,通过该地址与API进行通信和交互。获取步骤如下: 登录ModelArts Studio大模型开发平台。 获取模型请求URI。 若调用部署后的模型,可在左侧导航栏中选择“模型开发 > 模型部署”,在“我的服务”页签,模型部署列表单
发布视频类数据集 原始数据集和加工后的数据集不可以直接用于模型训练,需要独立创建一个“发布数据集”。 视频类数据集当前仅支持发布为“默认格式”,操作步骤如下: 登录ModelArts Studio大模型开发平台,进入所需操作空间。 图1 进入操作空间 在左侧导航栏中选择“数据工程
ModelArts Studio大模型开发平台使用流程 盘古大模型服务简介 盘古大模型服务致力于深耕行业,打造多领域行业大模型和能力集。 ModelArts Studio大模型开发平台是盘古大模型服务推出的集数据管理、模型训练、模型部署于一体的综合平台,专为开发和应用大模型而设计
获取模型调用API地址 服务的请求URI即API服务的终端地址,通过该地址与API进行通信和交互。获取步骤如下: 登录ModelArts Studio大模型开发平台。 获取模型请求URI。 若调用部署后的模型,可在左侧导航栏中选择“模型开发 > 模型部署”,在“我的服务”页签,模
设置候选提示词 用户可以将效果较好的提示词设为候选提示词,并对提示词进行比对,以查看其效果。 每个工程任务下候选提示词上限9个,达到上限9个时需要删除其他候选提示词才能继续添加。 登录ModelArts Studio大模型开发平台,进入所需空间。 在左侧导航栏中选择“Agent 开发
导入数据至盘古平台 数据集是一组用于处理和分析的相关数据样本。存储在OBS服务中的数据或本地数据导入ModelArts Studio大模型开发平台后,将以数据集的形式进行统一管理。 用户将数据导入至平台后,这些数据会生成一个“原始数据集”,用于对导入的数据进行集中管理和进一步操作。
上线标注后的文本类数据集 数据集标注完成并且审核无问题后,需要对该数据集执行上线操作。上线后的数据集可以用于后续的数据评估、发布任务。 上线标注后的数据集步骤如下: 登录ModelArts Studio大模型开发平台,进入所需操作空间。 图1 进入操作空间 在左侧导航栏中选择“数据工程
上线标注后的视频类数据集 数据集标注完成并且审核无问题后,需要对该数据集执行上线操作。上线后的数据集可以用于后续的数据评估、发布任务。 上线标注后的数据集步骤如下: 登录ModelArts Studio大模型开发平台,进入所需操作空间。 图1 进入操作空间 在左侧导航栏中选择“数据工程
配置Prompt builder 创建Agent的首要步骤就是撰写提示词(Prompt),为Agent设定人设、目标、核心技能、执行步骤。Agent会根据LLM对提示词的理解,来选择使用插件或知识库,响应用户问题。因此,一个好的提示词可以让LLM更好的理解并执行任务,Agent效果与提示词息息相关。
管理科学计算大模型部署任务 模型更新、修改部署 成功创建部署任务后,如需修改已部署的模型或配置信息,可以在详情页面单击右上角的“模型更新”或“修改部署”进行调整。更新模型时可以替换模型和修改作业配置参数,但在修改部署时模型不可替换或修改作业配置参数。 在“模型更新”或“修改部署”
管理盘古模型资产 模型资产介绍 用户在平台中可试用、订购或训练后发布的模型,将被视为模型资产并存储在空间资产内,方便统一管理与操作。用户可以查看模型的所有历史版本及操作记录,从而追踪模型的演变过程。同时,平台支持一系列便捷操作,包括模型训练、压缩和部署,帮助用户简化模型开发及应用