检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
流程。 开放的生态:用户间快速共享、交易。 应用场景 特定行业下希望解决特定问题的场景,例如: 政务场景 每日大量的问询需求进入政务系统中,根据系统架构不同,用户可以构建专有的自然语言处理分类模型,将问询需求分发到对应的部门,显著提高工作效率。 特点:构建专有的自然语言处理分类模
辑”快速处理图片,也可以按左上角操作指标调整图片。 图1 定义预处理 右侧“选择预处理逻辑”区域勾选对应操作,当前仅支持“自动旋转”操作,系统自动旋转文字方向不正确的图片,保持图片中的文字方向正确。 单击预处理区域左上方的操作图标,调整模板图片的大小、方向等。 :单击图标重置图片为初始状态,即未进行任何处理的状态。
拉框中选择模板,对每个模板图片进行预处理。 图1 多模板定义预处理 在右侧“选择预处理逻辑”区域勾选对应操作,当前仅支持“自动旋转”操作,系统自动旋转文字方向不正确的图片,保持图片中的文字方向正确。 单击预处理区域左上方的操作图标,调整模板图片的大小、方向等。 :单击图标重置图片为初始状态,即未进行任何处理的状态。
默认不开启。启用后,会将此数据集的难例属性等信息写入对应的Manifest文件中。 图2 发布数据集 版本发布后,您可以前往版本管理查看详细信息。系统默认将最新的版本作为当前目录。 数据集发布后,相关文件的目录结构说明 由于数据集是基于OBS目录管理的,发布为新版本后,对应的数据集输出位置,也将基于新版本生成目录。
训练分类器 确定模板图片的参照字段和识别区后,多模板分类工作流在模板数量较多,或版式相似度较高的情况下,建议针对不同的模板上传对应的训练集数据,用于训练模板分类模型,使服务能够精准地分类多个模板图片,然后对多个模板图片进行文字识别和结构化提取。 前提条件 已在文字识别套件控制台选
工作流介绍 工作流简介 功能介绍 支持用户自定义多个文字识别模板,通过模型训练,自动识别图片所需使用的模板,从而支持从大量不同板式图像中提取结构化信息。 适用场景 用户认证识别 识别证件中关键信息,节省人工录入,提升效率,降低用户实名认证成本,准确快速便捷。 快递单自动填写 识别
上传模板图片 在使用多模板分类工作流开发应用之前,必须要明确文字识别的模板类型,明确以哪几种板式图片作为模板训练文字识别模型,基于自己的业务需求制定针对性的文字识别模型。例如上传两种不同格式的发票图片作为模板,训练的文字识别模型就能识别并提取这两种格式发票上的关键字段。 前提条件
使用多模板工作流开发应用 ModelArts Pro的文字识别套件提供了多模板工作流,通过工作流指引支持自定义多个文字识别模板,通过模型训练,自动识别图片所属模板,从而支持从大量不同板式图像中提取结构化信息。 本章节提供一个票证类型的样例,帮助您快速熟悉使用文字识别套件中的多模板
编辑应用 对于已经创建的模板应用,您可以修改模板的配置信息以匹配业务变化。 前提条件 已存在创建的模板应用。 编辑模板配置信息 登录“ModelArts Pro>文字识别套件”控制台。 默认进入“应用开发>工作台”页面。 在“我的应用”页签下,选择应用并单击“操作”列的“查看”。
多模板分类工作流 工作流介绍 上传模板图片 定义预处理 框选参照字段 框选识别区 训练分类器 评估应用 部署服务 编辑应用 自定义字段类型 删除应用 父主题: 文字识别套件
评估应用 训练模板分类模型后,需要对模板分类器和模板图片进行评估和考察。您可以通过上传测试图片,在线评估模板分类情况和模板的文字识别情况,保证能在多个模板情况下正确分类测试图片的模板,并且能正确识别测试图片中的识别区文字。 前提条件 已在文字识别套件控制台选择“多模板分类工作流”
行业套件介绍 文字识别套件基于丰富的文字识别算法和行业知识积累,帮助客户快速构建满足不同业务场景需求的文字识别服务,实现多种版式图像的文字信息结构化提取。 文字识别套件的介绍请参见产品介绍。 预置工作流 文字识别套件当前提供了单模板工作流和多模板工作流,自主构建文字识别模板,识别
HiLens套件(使用HiLens安全帽检测技能开发可训练技能) ModelArts Pro的HiLens套件提供了安全帽检测技能,通过工作流指引支持自主上传数据集,零代码构建安全帽检测技能,并一键下发到端侧设备HiLens Kit;针对难例数据,可快速迭代更新技能,提升精度。
上传数据集失败如何处理? 问题原因 上传数据集失败,一般是因为数据集格式不对导致的。不同行业套件的工作流,对数据集要求也不同。 首先请检查数据集是否符合要求,各个套件的数据集要求如下: 文字识别套件 自然语言处理套件 视觉套件 HiLens套件 确认数据集符合要求后,将数据集上传至OBS桶。