检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
"application/json" } } ] 将模型部署为在线服务 参考部署为在线服务将模型部署为在线服务。 在线服务创建成功后,您可以在服务详情页查看服务详情。 您可以通过“预测”页签访问在线服务。 图5 访问在线服务 父主题: Standard推理部署
制作自定义镜像用于ModelArts Standard 自定义镜像使用场景 ModelArts支持的预置镜像列表 制作自定义镜像用于创建Notebook 制作自定义镜像用于训练模型 制作自定义镜像用于推理
列表章节。 制作自定义镜像用于创建Notebook 当Notebook预置镜像不能满足需求时,用户可以制作自定义镜像。在镜像中自行安装与配置环境依赖软件及信息,并制作为自定义镜像,用于创建新的Notebook实例。同时也支持用户在Notebook中,基于已有镜像制作新的自定义镜像。
ModelArts预置镜像更新说明 ModelArts统一镜像列表 Notebook专属预置镜像列表 训练专属预置镜像列表 推理专属预置镜像列表 父主题: 制作自定义镜像用于ModelArts Standard
示例:从 0 到 1 制作自定义镜像并用于训练(MPI+CPU/GPU) 本章节介绍如何从0到1制作镜像,并使用该镜像在ModelArts平台上进行训练。镜像中使用的AI引擎是MPI,训练使用的资源是CPU或GPU。 本实践教程仅适用于新版训练作业。 场景描述 本示例使用Linux
示例:从 0 到 1 制作自定义镜像并用于训练(PyTorch+CPU/GPU) 本章节介绍如何从0到1制作镜像,并使用该镜像在ModelArts平台上进行训练。镜像中使用的AI引擎是PyTorch,训练使用的资源是CPU或GPU。 本实践教程仅适用于新版训练作业。 场景描述 本示例使用Linux
用户使用ma-cli制作自定义镜像失败,报错文件不存在(not found) 问题现象 用户使用ma-cli制作自定义镜像失败,报错文件目录不存在。 图1 报错xxx not found 原因分析 复制的文件需要放在Dockerfile同级文件夹或者子目录中,不能放在Dockerfile上层目录。
ore等常用深度学习任务的基础镜像,镜像里已经安装好运行任务所需软件。当基础镜像里的软件无法满足您的程序运行需求时,您可以基于这些基础镜像制作一个新的镜像并进行训练。 训练基础镜像列表 ModelArts中预置的训练基础镜像如下表所示。 表1 ModelArts训练基础镜像列表 引擎类型
在线服务预测报错MR.0105 问题现象 部署为在线服务,服务处于运行中状态,预测时报错:{ "erno": "MR.0105", "msg": "Recognition failed","words_result": {}}。 图1 预测报错 原因分析 请在“在线服务”详情页面
部署在线服务 部署在线服务包括: 已部署为在线服务的初始化。 部署在线服务predictor。 部署批量服务transformer。 部署服务返回服务对象Predictor,其属性包括服务管理章节下的所有功能。 示例代码 在ModelArts notebook平台,Session
表1 在线服务配置 参数 说明 名称 在线服务名称。 状态 在线服务当前状态。 来源 在线服务的来源。 服务ID 在线服务的ID。 描述 您可以单击编辑按钮,添加服务描述。 资源池 当前服务使用的资源池规格。如果使用公共资源池部署,则不显示该参数。 个性化配置 您可以为在线服务的
ModelArts在线服务的API接口组成规则是什么? 模型部署成在线服务后,用户可以获取API接口用于访问推理。 API接口组成规则如下: https://域名/版本/infer/服务ID 示例如下: https://6ac81cdfac4f4a30be95xxxbb682.apig
Notebook专属预置镜像列表 ModelArts开发环境提供Docker容器镜像,可作为预构建容器运行。预置镜像里面包含PyTorch,Tensorflow,MindSpore等常用AI引擎框架,镜像命名以AI引擎为主,并且每个镜像里面都预置了很多常用包,用户可以直接使用而无需重新安装。
ModelArts预置镜像更新说明 本章节提供了ModelArts预置镜像的变更说明 ,比如依赖包的变化,方便用户感知镜像能力的差异,减少镜像使用问题。 统一镜像更新说明 表1 统一镜像更新说明 镜像名称 更新时间 更新说明 mindspore_2.3.0-cann_8.0.rc1-py_3
设置在线服务故障自动重启 场景描述 当系统检测到Snt9b硬件故障时,自动复位Snt9B芯片并重启推理在线服务,提升了推理在线服务的恢复速度。 约束限制 仅支持使用Snt9b资源的同步在线服务。 只支持针对整节点资源复位,请确保部署的在线服务为8*N卡规格,请谨慎评估对部署在该节点的其他服务的影响。
推理专属预置镜像列表 ModelArts的推理平台提供了一系列的基础镜像,用户可以基于这些基础镜像构建自定义镜像,用于部署推理服务。 X86架构(CPU/GPU)的推理基础镜像 表1 TensorFlow AI引擎版本 支持的运行环境 镜像名称 URI 2.1.0 CPU GPU(cuda10
ModelArts统一镜像列表 统一镜像列表 ModelArts提供了ARM+Ascend规格的统一镜像,包括MindSpore、PyTorch。适用于开发环境,模型训练,服务部署,请参考统一镜像列表。 表1 MindSpore 预置镜像 适配芯片 适用范围 mindspore_2
重启服务使修改生效。在提交修改服务任务时,如果涉及重启,会有弹窗提醒。 在线服务参数说明请参见部署模型为在线服务。修改在线服务还需要配置“最大无效实例数”设置并行升级的最大节点数,升级阶段节点无效。 修改在线服务参数时,可通过增加一个自定义的环境变量参数,触发服务重启。例如,如果
查看操作 在ModelArts管理控制台的左侧导航栏中选择“模型部署 > 在线服务”,在服务列表中,您可以单击名称/ID,进入服务详情页面。 在服务详情页面,切换到“事件”页签,查看事件信息。 父主题: 管理同步在线服务
集成在线服务API至生产环境中应用 针对已完成调测的API,可以将在线服务API集成至生产环境中应用。 前提条件 确保在线服务一直处于“运行中”状态,否则会导致生产环境应用不可用。 集成方式 ModelArts在线服务提供的API是一个标准的Restful API,可使用HTTP