检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
历史上非常困难的领域:接近人类水平的图像分类接近人类水平的语音识别接近人类水平的手写文字转录更好的机器翻译更好的文本到语音转换数字助理接近人类水平的自动驾驶更好的广告定向投放更好的网络搜索结果能够回答用自然语言提出的问题在围棋上战胜人类我们仍然在探索深度学习能力的边界。我们已经开
数据量 机器学习需要的执行时间远少于深度学习,深度学习参数往往很庞大,需要通过大量数据的多次优化来训练参数。 第一、它们需要大量的训练数据集 第二、是训练深度神经网络需要大量的算力 可能要花费数天、甚至数周的时间,才能使用数百万张图像的数据集训练出一个深度网络。所以以后 需要强大对的GPU服务器来进行计算
本课程由台湾大学李宏毅教授2022年开发的课程,主要介绍机器学习基本概念简介、深度学习基本概念简介。
来进行特征的转换与表示,再通过一个语言模型,在解码搜索中对模型的结果进行排序并选取得分最高的文本序列。早期应用于声学建模的深度模型是普通的深度神经网络(Deep Neural Networks,DNN),但DNN需要固定大小的输入,因而需要一种能够处理不同长度语音信号的方法。另外
律文件、提供医疗建议的计算机。”四十年来,我第一次对人工智能的发展感到乐观“缩放”的论点存在严重的漏洞。首先,我们的度量方式并没有考虑到迫切需要解决的问题,即真正的理解。业内人士早就知道,人工智能研究中最大的问题之一是我们用来评估人工智能系统的测试基准。著名的图灵测试旨在判断机器
深度学习区别于传统的浅层学习,深度学习的不同在于: (1)强调了模型结构的深度,通常有5层、6层,甚至10多层的隐层节点;(2)明确了特征学习的重要性。也就是说,通过逐层特征变换,将样本在原空间的特征表示变换到一个新特征空间,从而使分类或预测更容易。与人工规则构造特征的方法相比,
的区别:欠拟合在训练集和测试集上的性能都较差,而过拟合往往能较好地学习训练集数据的性质,而在测试集上的性能较差。在神经网络训练的过程中,欠拟合主要表现为输出结果的高偏差,而过拟合主要表现为输出结果的高方差。机器学习的目标:是使学得的模型能够很好的适用于新的样本,而不是仅仅在训练样
通过对课程的学习,从对EI的初体验到对深度学习的基本理解,收获了很多,做出如下总结:深度学习是用于建立、模拟人脑进行分析学习的神经网络,并模仿人脑的机制来解释数据的一种机器学习技术。它的基本特点是试图模仿大脑的神经元之间传递,处理信息的模式。最显著的应用是计算机视觉和自然语言处理
对信息的处理是分级的。从低级的提取边缘特征到形状(或者目标等),再到更高层的目标、目标的行为等,即底层特征组合成了高层特征,由低到高的特征表示越来越抽象。深度学习借鉴的这个过程就是建模的过程。 深度神经网络可以分为3类,前馈深度网络(feed-forwarddeep networks
learning,DL) 表示学习的理想很丰满,但实际中人们发现从数据的原始形式直接学得数据表示这件事很难。深度学习是目前最成功的表示学习方法,因此,目前国际表示学习大会(ICLR)的绝大部分论文都是关于深度学习的。深度学习是把表示学习的任务划分成几个小目标,先从数据的原始形式中先学习比较低级的表示,再从
种架构的所有方法之间的异同。其分析的角度包括训练的数据集、网络结构的设计、它们在重建性能、训练策略和泛化能力上的效果。对于一些关键的方法,作者还使用了公开数据集和私有数据进行总结和比较,采用私有数据的目的是测试各类方法在全新场景下的泛化性能。这篇论文能够为研究深度立体匹配的研究人
年到 2018 年,短短的六年时间里,深度学习所需的计算量增长了 300,000%。然而,与开发算法相关的能耗和碳排放量却鲜有被测量,尽管已有许多研究清楚地证明了这个日益严峻的问题。 针对这一问题,哥本哈根大学计算机科学系的两名学生,协同助理教授 一起开发了一个的软件程序,它可以计算
这里补充一点比较重要,但是容易被忽视掉的知识点: java 中的 length属性是针对数组说的,比如说你声明了一个数组,想知道这个数组的长度则用到了 length 这个属性. java 中的 length() 方法是针对字符串说的,如果想看这个字符串的长度则用到 length() 这个方法
语言有着层级结构,大的结构部件是由小部件递归构成的。但是,当前大多数基于深度学习的语言模型都将句子视为词的序列。在遇到陌生的句子结构时,循环神经网络(RNN)无法系统地展示、扩展句子的递归结构,深度学习学到的各组特征之间的关联是平面的,没有层级关系,那么请问层级关系是重要吗,在哪些方面能够体现
何得到输出的流程图中的最长路径的长度记为模型的深度。另一方面,在深度概率模型中,也把描述概念之间如何相互关联的图的深度而非计算图的深度记为一种模型的深度。值得注意的是,后者用来计算表示的计算图可能比概念图要深得多。鉴于这两种观点的共存,一般在一个模型有多深才算作“深度”模型上并没
实战项目 深度学习是一门实践性很强的学科,需要通过实战项目来加深对理论知识的理解和应用。可以选择一些开源的深度学习项目进行学习和实践,如ImageNet、CIFAR-10等。 2.比赛竞赛 参加深度学习相关的比赛竞赛,可以锻炼自己的深度学习能力和实战经验,也可以与其他深度学习爱好者
未出现的拐角情况。在深度学习的研究中,简化学习可能是最不受关注的,因为“我们通过一个可行的架构尺寸实现了良好的性能”不如“我们通过一个由成千上万个参数组成的架构实现了最先进的性能”。不可避免地,当高分成绩的宣传消失时,正如创新的历史所表明的那样,简化学习——事实上,真正的实践学习——将受到更多的关注。
对信息的处理是分级的。从低级的提取边缘特征到形状(或者目标等),再到更高层的目标、目标的行为等,即底层特征组合成了高层特征,由低到高的特征表示越来越抽象。深度学习借鉴的这个过程就是建模的过程。 深度神经网络可以分为3类:1.前馈深度网络(feed-forwarddeep networks
当面对更多的特征而样本不足时,线性模型往往会过拟合。相反,当给出更多的样本而不是特征,通常线性模型不会过拟合。不幸的是,线性模型泛化的可靠性是由代价的。简单地说,线性模型没有考虑到特征之间的交互作用。对于每个特征,线性模型都必须指定正的或负的权重。 泛化小和灵活性之间的这种基本权
然而,经验风险最小化很容易导致过拟合。高容量的模型会简单地记住训练集。在很多情况下,经验风险最小化并非真的可行。最有效的现代优化算法是基于梯度下降的,但是很多有用的损失函数,如 0 − 1 损失,没有有效的导数(导数要么为零,要么处处未定义)。这两个问题说明,在深度学习中我们很少使用经验风险最小