检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
曲线下面的面积,通常来说一个越好的分类器,AP值越高。 mAP是多个类别AP的平均值。这个mean的意思是对每个类的AP再求平均,得到的就是mAP的值,mAP的大小一定在[0,1]区间,越大越好。该指标是目标检测算法中最重要的一个。 在正样本非常少的情况下,PR表现的效果会更好。 5、
个植物的萼片长度,Xi,2 表示第 i 个植物的萼片宽度,等等。我们在本书中描述的大部分学习算法都是讲述它们是如何运行在设计矩阵数据集上的。当然,将一个数据集表示成设计矩阵,必须是可以将每一个样本表示成向量,并且这些向量的大小相同。这一点并非永远可能。例如,你有不同宽度和高度的照片的集
1992)训练带有额外惩罚的神经网络分类器,使神经网络的每个输出 f(x) 对已知的变化因素是局部不变的。这些变化因素对应于沿着的相同样本聚集的流形的移动。这里实现局部不变性的方法是要求 ∇xf(x) 与已知流形的切向 v(i) 正交,这个正则化项当然可以通过适当的超参数缩放,并且对于大多数神经网络,我们需要对许多输出求和
因变量:0.8 权重:0.2 预测值:0.1 差值:0.245 梯度:-0.35 ``` 可以看到预测值和真实值的差值在变小(0.32 > 0.245),也就是在向着不断的收敛的方向。
程序很难解决的问题。从科学和哲学的角度来看,机器学习受到关注是因为提高我们对机器学习的认识需要提高我们对智能背后原理的理解。如果考虑“任务”比较正式的定义,那么学习的过程并不是任务。在相对正式的 “任务”定义中,学习过程本身并不是任务。学习是我们所谓的获取完成任务的能力。例如,我
基于物联网平台、ECS、软件开发服务,通过数据转发和订阅推送两种方式,搭建智慧路灯应用。
基于物联网平台、ECS、软件开发服务,通过数据转发和订阅推送两种方式,搭建智慧路灯应用。
是通过合并几个任务中的样例(可以视为对参数施加的软约束)来提高泛化的一种方式。额外的训练样本以同样的方式将模型的参数推向泛化更好的方向,当模型的一部分在任务之间共享时,模型的这一部分更多地被约束为良好的值(假设共享是合理的),往往能更好地泛化。展示了多任务学习中非常普遍的一种形式,其中不同的监督任务(给定
深度学习相结合的方法。本文将介绍集成学习的基本概念和深度学习的优势,然后讨论集成学习在深度学习中的应用,并总结结合集成学习的深度学习算法的优势和挑战。 什么是集成学习 集成学习是一种通过将多个模型的预测结果进行组合来提高模型性能的方法。常见的集成学习方法包括投票法、平均法和堆叠法
中大部分区域都是无效的输入,感兴趣的输入只分布在包含少量点的子集构成的一组流形中,而学习函数中感兴趣输出的变动只位于流形中的方向,或者感兴趣的变动只发生在我们从一个流形移动到另一个流形的时候。流形学习是在连续数值数据和无监督学习的设定下被引入的,尽管这个概率集中的想法也能够泛化到离
中大部分区域都是无效的输入,感兴趣的输入只分布在包含少量点的子集构成的一组流形中,而学习函数中感兴趣输出的变动只位于流形中的方向,或者感兴趣的变动只发生在我们从一个流形移动到另一个流形的时候。流形学习是在连续数值数据和无监督学习的设定下被引入的,尽管这个概率集中的想法也能够泛化到离散
成分学习 成分学习不仅使用一个模型的知识,而且使用多个模型的知识。人们相信,通过独特的信息组合或投入(包括静态和动态的),深度学习可以比单一的模型在理解和性能上不断深入。 迁移学习是一个非常明显的成分学习的例子, 基于这样的一个想法, 在相似问题上预训练的模型权重可以用来在一个特定的问题上进行微
Eureka理论深度解析 一、Eureka是什么? Eureka是Netflix开源的一个服务发现组件,专门为微服务架构设计。它主要用于定位运行在AWS域中的中间层服务,以达到负载均衡和中间层服务故障转移的目的。在Spring Cloud生态系统中,Eureka起到了服务注册中心的作用,负责服务的注册、发现和健康检查。
机器学习的主要挑战是我们的算法必须能够在先前未观测的新输入上表现良好,而不只是在训练集上效果好。在先前未观测到的输入上表现良好的能力被称为泛化(generalization)。通常情况下,当我们训练机器学习模型时,我们可以访问训练集,在训练集上计算一些度量误差,被称为训练误差(training
机器学习的主要挑战是我们的算法必须能够在先前未观测的新输入上表现良好,而不只是在训练集上效果好。在先前未观测到的输入上表现良好的能力被称为泛化(generalization)。通常情况下,当我们训练机器学习模型时,我们可以访问训练集,在训练集上计算一些度量误差,被称为训练误差(training
引入了深度强化学习(Deep Reinforcement Learning)的概念。本文将介绍深度强化学习的基本概念、算法原理以及在实际应用中的一些案例。 深度强化学习的基本概念 深度强化学习是将深度学习与强化学习相结合的一种方法。在深度强化学习中,智能体通过与环境的交互来学
行详细介绍。除此之外,随着深度学习模型中网络层数的加深、参数的增多、计算量的加大,计算速度慢、资源消耗多的问题逐渐成为不可忽视的挑战,以保证深度学习训练精度的同时加快训练速度为目的的并行计算与交叉验证运用而生,这两种方法的详细介绍以及实例分析将在第7章进行。
上的样本具有相同的类别。由于分类器应该对局部因素(对应于流形上的移动)的变化保持不变,一种合理的度量是将点 x1 和 x2 各自所在流形 M1 和 M2 的距离作为点 x1 和 x2 之间的最近邻距离。然而这可能在计算上是困难的(它需要解决一个寻找 M1 和 M2 最近点对的优化问题),一种局部合理的廉价替代是使用
左上的元素,Am,n 表示A 右下的元素。我们表示垂直坐标i 中的所有元素时,用“:” 表示水平坐标。比如,Ai;: 表示A 中垂直坐标i 上的一横排元素。这也被称为A 的第i行(row)。同样地,A:;i 表示A 的第i列(column)。当我们需要明确表示矩阵中的元素时,我们将它们写在用方括号包围起来的数组中:
机器学习算法和一般优化算法不同的一点是,机器学习算法的目标函数通常可以分解为训练样本上的求和。机器学习中的优化算法在计算参数的每一次更新时通常仅使用整个代价函数中一部分项来估计代价函数的期望值。另一个促使我们从小数目样本中获得梯度的统计估计的动机是训练集的冗余。在最坏的情况下,训练集中所有的