内容选择
全部
内容选择
内容分类
  • 学堂
  • 博客
  • 论坛
  • 开发服务
  • 开发工具
  • 直播
  • 视频
  • 用户
时间
  • 一周
  • 一个月
  • 三个月
  • 带视频教程哈夫曼树深度广度遍历——邻接表法。

    //将新结点*S插入顶点Vj边表头部 } } //定义标志向量,为全局变量 typedef enum { FALSE, TRUE } Boolean; Boolean visited[MaxVertexNum]; //DFS:深度优先遍历递归算法 void DFSM(ALGraph

    作者: 肥学
    发表时间: 2022-03-27 16:28:36
    424
    0
  • 深度学习修炼(六)——神经网络分类问题

    当面对更多特征而样本不足时,线性模型往往会过拟合。相反,当给出更多样本而不是特征,通常线性模型不会过拟合。不幸是,线性模型泛化可靠性是由代价。简单地说,线性模型没有考虑到特征之间交互作用。对于每个特征,线性模型都必须指定正或负权重。 泛化小灵活性之间这种基本权

    作者: ArimaMisaki
    发表时间: 2022-08-09 15:48:10
    263
    0
  • 深度学习概览

    HCIA-AI V3.0系列课程。本课程主要讲述深度学习相关基本知识,其中包括深度学习发展历程、深度学习神经 网络部件、深度学习神经网络不同类型以及深度学习工程中常见问题。

  • 深度学习介绍

    建更复杂模型。通过大量数据训练自动得到模型,不需要人工设计特征提取环节。 深度学习算法试图从数据中学习高级功能,这是深度学习一个非常独特部分。因此,减少了为每个问题开发新特征提取器任务。适合用在难提取特征图像、语音、自然语言领域 1.1.2 深度学习应用场景

    作者: Lansonli
    发表时间: 2021-09-28 15:18:45
    1023
    0
  • 动手学深度学习:优化与深度学习关系

    令目标函数相反数为新目标函数即可。7.1.1 优化与深度学习关系虽然优化为深度学习提供了最小化损失函数方法,但本质上,优化与深度学习目标是有区别的。在3.11节中,我们区分了训练误差泛化误差。由于优化算法目标函数通常是一个基于训练数据集损失函数,优化目标在于降低

    作者: 且听风吟
    发表时间: 2019-09-04 09:40:07
    6962
    0
  • 深度学习模型结构

    对信息处理是分级。从低级提取边缘特征到形状(或者目标等),再到更高层目标、目标的行为等,即底层特征组合成了高层特征,由低到高特征表示越来越抽象。深度学习借鉴这个过程就是建模过程。 深度神经网络可以分为3类:1.前馈深度网络(feed-forwarddeep networks

    作者: 运气男孩
    1145
    2
  • 《Keras深度学习实战》—2.4 MNIST数据集

    gz这些文件中数据以IDX格式存储。IDX文件格式是用于存储向量与多维度矩阵文件格式,你可以在http://www.fon.hum.uva.nl/praat/manual/IDX_file_format.html上找到IDX格式更多信息。 上图显示了MNIST数据集表示图像。怎么做使用keras

    作者: 华章计算机
    发表时间: 2019-06-15 12:20:24
    7582
    0
  • 部署深度学习模型

    虽然modelarts能够帮助我们在线上完成深度学习模型,但是训练好深度学习模型是怎么部署

    作者: 初学者7000
    870
    3
  • 深度学习:主流框架编程实战》——1.4 优化深度学习方法

    1.4 优化深度学习方法目前,深度学习在多种目标分类识别任务中取得优于传统算法结果,并产生大量优秀模型,使用迁移学习方法将优秀模型应用在其他任务中,可以达到在减少深度学习训练时间前提下,提升分类任务性能,同时降低对训练集规模依赖,关于迁移学习及其实例分析将在第6章进

    作者: 华章计算机
    发表时间: 2019-06-04 19:31:15
    2948
    0
  • 深度学习模型介绍

    深度神经网络:深度学习模型有很多,目前开发者最常用深度学习模型与架构包括卷积神经网络 (CNN)、深度置信网络 (DBN)、受限玻尔兹曼机 (RBM)、递归神经网络 (RNN & LSTM & GRU)、递归张量神经网络 (RNTN)、自动编码器 (AutoEncoder)、生成对抗网络

    作者: 极客潇
    1759
    2
  • 深度学习现实应用

    深度学习现实应用近年来掀起深度学习革命已经深刻地改变了诸多应用领域,并将在越来越多领域取得成功。其中最广为人知领域包括自动语音识别、图像识别、自然语言理解及很多其他交叉领域(如医疗、生物、金融等)一、语音识别在语音识别智能语音助手领域,我们可以利用深度神经网络开发出更准

    作者: 运气男孩
    831
    4
  • 深度学习特点

    征,更能够刻画数据丰富内在信息。 通过设计建立适量神经元计算节点多层运算层次结构,选择合适输人层输出层,通过网络学习调优,建立起从输入到输出函数关系,虽然不能100%找到输入与输出函数关系,但是可以尽可能逼近现实关联关系。使用训练成功网络模型,就可以实现我们对复杂事务处理的自动化要求。

    作者: QGS
    667
    2
  • 深度学习之噪声

    Dropout另一个重要方面是噪声是乘性。如果是固定规模加性噪声,那么加了噪声 ϵ 整流线性隐藏单元可以简单地学会使 hi 变得很大(使增加噪声 ϵ 变得不显著)。乘性噪声不允许这样病态地解决噪声鲁棒性问题。另一种深度学习算法——批标准化,在训练时向隐藏单元引入加性乘性噪声

    作者: 小强鼓掌
    1043
    3
  • 分布式理论学习一:微服务

    将应用程序不同功能单元(称为服务)进行拆分,并通过这些服务之间定义良好接口和协议联系起来。接口是采用中立方式进行定义,它应该独立于实现服务硬件平台、操作系统编程语言。这使得构建在各种各样系统中服务可以以一种统一通用方式进行交互。 微服务即是SOA演进架构,但是SOA不绑定实际的技术

    作者: 仙士可
    发表时间: 2023-06-26 17:12:48
    17
    0
  • Python算法——树最大深度最小深度

    Python中最大深度最小深度算法详解 树最大深度最小深度是树结构中两个关键指标,它们分别表示树从根节点到最深叶子节点最大路径长度最小路径长度。在本文中,我们将深入讨论如何计算树最大深度最小深度,并提供Python代码实现。我们将详细说明算法原理步骤。 计算树的最大深度

    作者: Echo_Wish
    发表时间: 2023-11-19 23:02:15
    33
    0
  • 深度学习初体验

    通过对课程学习,从对EI初体验到对深度学习基本理解,收获了很多,做出如下总结:深度学习是用于建立、模拟人脑进行分析学习神经网络,并模仿人脑机制来解释数据一种机器学习技术。它基本特点是试图模仿大脑神经元之间传递,处理信息模式。最显著应用是计算机视觉自然语言处理

    作者: ad123445
    8088
    33
  • 深度学习模型结构

    对信息处理是分级。从低级提取边缘特征到形状(或者目标等),再到更高层目标、目标的行为等,即底层特征组合成了高层特征,由低到高特征表示越来越抽象。深度学习借鉴这个过程就是建模过程。 深度神经网络可以分为3类,前馈深度网络(feed-forwarddeep networks

    作者: QGS
    644
    2
  • 分享深度学习算法

    种架构所有方法之间异同。其分析角度包括训练数据集、网络结构设计、它们在重建性能、训练策略泛化能力上效果。对于一些关键方法,作者还使用了公开数据集私有数据进行总结比较,采用私有数据目的是测试各类方法在全新场景下泛化性能。这篇论文能够为研究深度立体匹配研究人

    作者: 初学者7000
    951
    3
  • 深度学习简介

    本课程由台湾大学李宏毅教授2022年开发课程,主要介绍机器学习基本概念简介、深度学习基本概念简介。

  • 深度学习在环保

    年,短短六年时间里,深度学习所需计算量增长了 300,000%。然而,与开发算法相关能耗碳排放量却鲜有被测量,尽管已有许多研究清楚地证明了这个日益严峻问题。 针对这一问题,哥本哈根大学计算机科学系两名学生,协同助理教授 一起开发了一个软件程序,它可以计算预测训练深

    作者: 初学者7000
    838
    2