检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
级。 产品介绍 什么是盘古大模型 产品优势 应用场景 产品功能 模型能力与规格 基础知识 03 入门 通过快速入门引导,您将快速熟悉平台的核心能力,探索多种应用场景,从而更好地发挥盘古大模型在实际业务中的价值。 快速入门 使用盘古预置NLP大模型进行文本对话 使用盘古应用百宝箱生成创意活动方案
应用介绍 在Agent开发平台上,用户可以构建两种类型的应用: 知识型Agent:以大模型为任务执行核心,适用于文本生成和文本检索任务,如搜索问答助手、代码生成助手等。用户通过配置Prompt、知识库等信息,使得大模型能够自主规划和调用工具。 优点:零代码开发,对话过程智能化。
略 略 训练模型 自监督训练: 不涉及 有监督微调: 本场景采用了下表中的微调参数进行微调,您可以在平台中参考如下参数进行训练: 表2 微调核心参数设置 训练参数 设置值 数据批量大小(batch_size) 8 训练轮数(epoch) 4 学习率(learning_rate) 7
同时,数据工程工具链还提供强大的数据存储和管理能力,为大模型训练提供高质量的数据支撑。 模型开发工具链 模型开发工具链是盘古大模型服务的核心组件,提供从模型创建到部署的一站式解决方案。 该工具链具备模型训练、压缩、部署、评测、推理等功能,通过高效的推理性能和跨平台迁移工具,模型
数据工程介绍 数据工程使用流程 数据集格式要求 导入数据至盘古平台 加工数据集 发布数据集 模型开发工具链 模型开发工具链是盘古大模型服务的核心组件,提供从模型创建到部署的一站式解决方案。 该工具链具备模型训练、压缩、部署、评测、推理等功能,通过高效的推理性能和跨平台迁移工具,模型
Studio大模型开发平台提供数据加工功能,涵盖了数据加工、数据合成和数据标注关键操作,旨在确保原始数据符合业务需求和模型训练的标准,是数据工程中的核心环节。 数据加工 通过专用的加工算子对数据进行预处理,确保数据符合模型训练的标准和业务需求。不同类型的数据集使用专门设计的算子,例如去除噪
去噪处理:去除无关或异常值,减少对模型训练的干扰。 数据预处理的目的是保证数据集的质量,使其能够有效地训练模型,并减少对模型性能的不利影响。 模型开发:模型开发是大模型项目中的核心阶段,通常包括以下步骤: 选择合适的模型:根据任务目标选择适当的模型。 模型训练:使用处理后的数据集训练模型。 超参数调优:选择合适的学习
训练模型 自监督训练: 不涉及 有监督微调: 该场景采用下表中的微调参数进行微调,您可以在平台中参考如下参数进行训练: 表2 问答模型的微调核心参数设置 训练参数 设置值 数据批量大小(batch_size) 4 训练轮数(epoch) 3 学习率(learning_rate) 3e-6
上。 训练模型 自监督训练: 不涉及 有监督微调: 该场景采用了下表中的微调参数进行微调,您可以在平台中参考如下参数进行训练: 表1 微调核心参数设置 训练参数 设置值 数据批量大小(batch_size) 8 训练轮数(epoch) 6 学习率(learning_rate) 7
知识型Agent:以大模型为任务执行核心,用户通过配置Prompt、知识库等信息,实现工具自主规划与调用,优点是可零码开发,对话过程更为智能,缺点是当大模型受到输入限制,难以执行链路较长且复杂的流程。 流程型Agent:以工作流为任务执行核心,用户通过在画布上对节点进行“拖拉拽”
描述,单击“确定”,完成应用创建。 图1 创建应用 步骤2:配置提示词 创建应用后,需要撰写提示词(Prompt),为应用设定人设、能力、核心技能、执行步骤。 应用会根据盘古NLP大模型对提示词的理解,来响应用户问题。因此,一个好的提示词可以让模型更好地理解并执行任务,应用效果与提示词息息相关。
在低代码构建多语言文本翻译工作流中,优化和评估的关键在于如何设计和调整prompt(提示词)。prompt是与大模型或其他节点(如翻译插件)交互的核心,它直接影响工作流响应的准确性和效果。因此,效果评估与优化应从以下几个方面进行详细分析: 评估工作流响应的准确性:从工作流响应准确性维度看
改应用图标,单击“确定”,进入应用编排页面。 步骤2:配置提示词 创建应用后,需要撰写提示词(Prompt),为Agent设定人设、目标、核心技能、执行步骤。 应用会根据盘古NLP大模型对提示词的理解,来选择使用插件、工作流或知识库,响应用户问题。因此,一个好的提示词可以让模型更
</dependency> Python 使用pip安装。 #回显Successfully installed xxx表示安装成功 # 安装核心库 pip install huaweicloudsdkcore # 安装盘古服务库 pip install huaweicloudsdkpangulargemodels
通过使用海量的互联网文本语料对模型进行预训练,使模型理解人类语言的基本结构。 微调 关注专业性:微调是对预训练模型的参数进行调整,使其在特定任务中达到更高的精度和效果。微调的核心在于利用少量的特定任务数据,使模型的表现从通用性向具体任务需求过渡。 使用小规模的特定任务数据:微调通常需要小规模但高质量的标注数据,直接
人工智能助手在生活中的应用及其优势的文章:智能家居、智能安防、安全隐私。”,可以看出优化前大模型虽然介绍了人工智能助手但内容空洞,文章缺乏核心观点。通过优化提示词之后可以看出大模型围绕智能家居、智能安防、安全隐私展开介绍人工智能助手,生成内容更加具体。 表1给出了提示词的优化示例
古NLP大模型、CV大模型、预测大模型、科学计算大模型、专业大模型等服务,便捷地构建自己的模型和应用。 数据工程工具链:数据是大模型训练的核心基础。数据工程工具链作为平台的重要组成部分,具备数据获取、数据加工和数据发布等功能,确保数据的高质量与一致性。工具链能够高效收集并处理各种