检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
型大于60G,请提工单扩容。 Step3 部署在线服务 将Step2 部署模型中创建的AI应用部署为一个在线服务,用于推理调用。 在ModelArts控制台,单击“部署上线 > 在线服务 > 部署”,开始部署在线服务。 图5 部署在线服务 设置部署服务名称,选择Step2 部署模
Lite Server GPU A系列裸金属服务器如何进行RoCE性能带宽测试? GPU A系列裸金属服务器节点内如何进行NVLINK带宽性能测试方法? 如何将Ubuntu20.04内核版本从低版本升级至5.4.0-144-generic? 如何禁止Ubuntu 20.04内核自动升级?
已存在部署完成的服务。 已完成模型调整,创建AI应用新版本。 操作步骤 登录ModelArts管理控制台,在左侧导航栏中选择“部署上线 > 在线服务”,默认进入“在线服务”列表。 在部署完成的目标服务中,单击操作列的“修改”,进入“修改服务”页面。 在选择模型及配置中,单击“增加模型版本进行灰度发布”添加新版本。
性能调优 单模型性能测试工具Mindspore lite benchmark 单模型性能调优AOE 父主题: 基于AIGC模型的GPU推理业务迁移至昇腾指导
WebUI推理方案概览 在DevServer上部署SD WebUI推理服务 在Standard上部署SD WebUI推理服务 SD WebUI推理性能测试 父主题: AIGC模型训练推理
克隆GitHub开源仓库文件到JupyterLab 上传OBS文件到JupyterLab 上传远端文件至JupyterLab 父主题: 通过JupyterLab在线使用Notebook实例进行AI开发
SimDeduplication效果图 表1 高级参数说明 参数名 是否必选 默认值 参数说明 simlarity_threshold 否 0.9 相似程度阈值,两张图片间的相似度大于阈值时,其中一张会作为重复图片被过滤掉。取值范围为0~1。 do_validation 否 True 是否进行数据校验,
型大于60G,请提工单扩容。 Step3 部署在线服务 将Step2 部署模型中创建的AI应用部署为一个在线服务,用于推理调用。 在ModelArts控制台,单击“部署上线 > 在线服务 > 部署”,开始部署在线服务。 图5 部署在线服务 设置部署服务名称,选择Step2 部署模
表示代码运行状态,变为实心圆时,表示代码在运行中。 分享到AI Gallery。 代码化参数插件的使用 代码参数化插件可以降低Notebook案例的复杂度,用户无需感知复杂的源码,按需调整参数快速进行案例复现、模型训练等。该插件可用于定制Notebook案例,适用于比赛、教学等场景。 仅对Code
name/obs_file.txt",path="/home/user/obs_file.txt") 父主题: 通过JupyterLab在线使用Notebook实例进行AI开发
型大于60G,请提工单扩容。 Step3 部署在线服务 将Step2 部署模型中创建的AI应用部署为一个在线服务,用于推理调用。 在ModelArts控制台,单击“部署上线 > 在线服务 > 部署”,开始部署在线服务。 图5 部署在线服务 设置部署服务名称,选择Step2 部署模
服务管理 服务管理概述 在开发环境中部署本地服务进行调试 部署在线服务 查询服务详情 推理服务测试 查询服务列表 查询服务对象列表 更新服务配置 查询服务监控信息 查询服务日志 删除服务
作为调用发起方的客户端无法访问已经获取到的推理请求地址 问题现象 完成在线服务部署且服务处于“运行中”状态后,已经通过调用指南页面的信息获取到调用的server端地址,但是调用发起方的客户端访问该地址不通,出现无法连接、域名无法解析的现象。 原因分析 在调用指南页签中显示的调用地
准确性的影响在大多数情况下较小。与BF16相比在处理非常大或非常小的数值时遇到困难,导致数值的精度损失。 综上所述,BF16因其与FP32相似的数值范围和稳定性,在大模型训练中提供了优势。而FP16则在计算效率和内存使用方面有其独特的优点,但可能在数值范围和稳定性方面略逊一筹。因
ster”已指向最新一次的提交。同时在GitHub对应仓库的commit记录中也可以查找到对应的信息。 父主题: 通过JupyterLab在线使用Notebook实例进行AI开发
在开发环境中创建MindInsight可视化作业流程 Step1 创建开发环境并在线打开 Step2 上传Summary数据 Step3 启动MindInsight Step4 查看训练看板中的可视化数据 Step1 创建开发环境并在线打开 在ModelArts控制台,进入“开发空间> Noteb
在开发环境中创建TensorBoard可视化作业流程 Step1 创建开发环境并在线打开 Step2 上传Summary数据 Step3 启动TensorBoard Step4 查看训练看板中的可视化数据 Step1 创建开发环境并在线打开 在ModelArts控制台,进入“开发空间 > Note
准确性的影响在大多数情况下较小。与BF16相比在处理非常大或非常小的数值时遇到困难,导致数值的精度损失。 综上所述,BF16因其与FP32相似的数值范围和稳定性,在大模型训练中提供了优势。而FP16则在计算效率和内存使用方面有其独特的优点,但可能在数值范围和稳定性方面略逊一筹。因
准确性的影响在大多数情况下较小。与BF16相比在处理非常大或非常小的数值时遇到困难,导致数值的精度损失。 综上所述,BF16因其与FP32相似的数值范围和稳定性,在大模型训练中提供了优势。而FP16则在计算效率和内存使用方面有其独特的优点,但可能在数值范围和稳定性方面略逊一筹。因
行历史。 图5 在Notebook Job Definitions页签单击任务名称 图6 设置定时任务 父主题: 通过JupyterLab在线使用Notebook实例进行AI开发