检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
模型的端口没有配置,如您在自定义镜像配置文件中修改了端口号,需要在部署模型时,配置对应的端口号,使新的模型重新部署服务。 如何修改默认端口号,请参考使用自定义镜像创建在线服务,如何修改默认端口。 父主题: 服务部署
Lite生成的图像和onnx模型的输出结果有明显的差异,因此需要对MindSpore Lite pipeline进行精度诊断。 图1 结果对比 在MindSpore Lite 2.0.0版本中,Stable Diffusion的五个模型的精度都能够保证一致性,但是在最新的2.1.
--quantization-param-path kv_cache_scales.json #输入2. 抽取kv-cache量化系数生成的json文件路径; 如果只测试推理功能和性能,不需要此json文件,此时scale系数默认为1,但是可能会造成精度下降。 per-tensor+per-head静态量化场景
--quantization-param-path kv_cache_scales.json #输入2. 抽取kv-cache量化系数生成的json文件路径; 如果只测试推理功能和性能,不需要此json文件,此时scale系数默认为1,但是可能会造成精度下降。 per-tensor+per-head静态量化场景
规则。 综上,在线服务的运行费用 = 计算资源费用(3.50 元) + 存储费用 示例:使用专属资源池。计费项:存储费用 假设用户于2023年4月1日10:00:00创建了一个使用专属资源池的在线服务,并在11:00:00停止运行。按照存储费用结算,那么运行这个在线服务的费用计算过程如下:
训练预测分析模型 创建自动学习后,将会进行模型的训练,得到预测分析的模型。模型部署步骤将使用预测模型发布在线预测服务。 操作步骤 在新版自动学习页面,单击创建成功的项目名称,查看当前工作流的执行情况。 在“预测分析”节点中,待节点状态由“运行中”变为“运行成功”,即完成了模型的自动训练。
登录ModelArts控制台,在自动学习作业列表中,删除正在扣费的自动学习作业。在训练作业列表中,停止因运行自动学习作业而创建的训练作业。在“在线服务”列表中,停止因运行自动学习作业而创建的服务。操作完成后,ModelArts服务即停止计费。 登录OBS控制台,进入自己创建的OBS桶
py第39行为SUPPORT_FP16 = True 问题8:使用benchmark-tools对GLM系列模型进行性能测试报错 使用benchmark-tools对GLM系列模型进行性能测试报错TypeError: _pad() got an unexpected keyword argument
py第39行为SUPPORT_FP16 = True 问题8:使用benchmark-tools对GLM系列模型进行性能测试报错 使用benchmark-tools对GLM系列模型进行性能测试报错TypeError: _pad() got an unexpected keyword argument
py第39行为SUPPORT_FP16 = True 问题8:使用benchmark-tools对GLM系列模型进行性能测试报错 使用benchmark-tools对GLM系列模型进行性能测试报错TypeError: _pad() got an unexpected keyword argument
py第39行为SUPPORT_FP16 = True 问题8:使用benchmark-tools对GLM系列模型进行性能测试报错 使用benchmark-tools对GLM系列模型进行性能测试报错TypeError: _pad() got an unexpected keyword argument
其中ServiceStep节点包含两个输入,一个是模型列表对象,另一个是在线服务对象,此时在运行态通过开关的方式来控制部署/更新服务,如下图所示: 在线服务开关默认关闭,节点走部署服务的流程;如果需要更新服务,则手动打开开关,选择相应的在线服务即可。 进行服务更新时,需要保证被更新的服务所使用的模型与配置的模型名称相同。
删除Workflow工作流 查询Workflow工作流 修改Workflow工作流 总览Workflow工作流 查询Workflow待办事项 在线服务鉴权 创建在线服务包 获取Execution列表 新建Workflow Execution 删除Workflow Execution 查询Workflow
表5 Monitor 参数 参数类型 描述 failed_times Integer 模型实例调用失败次数,在线服务字段。 model_version String 模型版本,在线服务字段。 cpu_memory_total Integer 总内存,单位MB。 gpu_usage Float
标 训练作业:用户在运行训练作业时,可以查看多个计算节点的CPU、GPU、NPU资源使用情况。具体请参见训练资源监控章节。 在线服务:用户将模型部署为在线服务后,可以通过监控功能查看CPU、内存、GPU等资源使用统计信息和模型调用次数统计,具体参见查看服务详情章节。 父主题: ModelArts
--rank <rank> --save_steps=5 --max_steps 100 <cfgs_yaml_file>:性能或精度测试配置的yaml文件地址,如代码目录中performance_cfgs.yaml、accuracy_cfgs.yaml相对或绝对路径,根据自己要求执行
moondream2 moondream2:/home/ma-user/ #复制moondream2目录到容器中 Step5 准备测试数据 需要用户自己准备测试图片。 将测试图片存放在宿主机/home/temp/data目录下,修改目录权限后,复制到容器中。 chmod -R 777 data
服务当前运行所用配置的更新时间,距“1970.1.1 0:0:0 UTC”的毫秒数。 debug_url String 在线服务在线调试地址,只有当模型支持在线调试且只有一个实例的时候会存在。 due_time Number 在线服务自动停止时间,距“1970.1.1 0:0:0 UTC”的毫秒数,未配置自动停止则不返回。
按需计费规格,使用完之后请及时停止Workflow,避免产生不必要的费用。 测试推理服务:工作流运行完成后,在服务部署节点右侧单击“实例详情”跳转至推理服务详情页。或者在ModelArts管理控制台,选择“部署上线>在线服务”,找到部署的推理服务,单击服务名称,进入服务详情页。单击“预测”,右边可查看预测结果。
1009”:“AppKey or AppSecret is invalid”。 查询AppKey和AppSecret,使用APP认证访问在线服务,请参考访问在线服务(APP认证)。 父主题: 服务预测