检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
Storage Service,简称OBS)进行数据存储,实现安全、高可靠和低成本的存储需求。因此,为了能够正常的存储数据、训练模型,需要用户配置盘古访问OBS的权限。 使用主账号登录盘古大模型套件平台。 在左侧菜单选择“平台管理 > 授权管理”,单击右上角“一键授权”进行授权。
获取提示词模板 平台提供了多种任务场景的提示词模板,可以帮助用户更好地利用大模型的能力,引导模型生成更准确且更具针对性的输出,从而提高模型在特定任务上的性能。在创建提示词工程前,可以先使用预置的提示词模板,或基于提示词模板进行改造,如果提示词模板满足不了使用需求,可再单独创建。 提示词模板可以在平台“应用开发
压缩盘古大模型 N2基础功能模型、N4基础功能模型、经有监督微调训练以及RLHF训练后的N2、N4模型可以通过模型压缩技术在保持相同QPS目标的情况下,降低推理时的显存占用。 采用INT8的压缩方式,INT8量化可以显著减小模型的存储大小与降低功耗,并提高计算速度。 模型经过量化
工具的描述,尽可能的准确简短描述工具的用途。 说明: 该描述直接影响大模型对工具使用的判断,请尽量描述清楚。如果AI助手实际执行时,无法根据用户问题匹配到工具,或者匹配效果不理想,可以修改此描述。 input_schema 是 Json Schema 工具输入参数。将API封装为工
对召回工具的准确性要求更高。 多轮改写模型:对用户的问题进行多次改写,以增加召回内容的多样性。 检索工具数量:指在处理用户问题时,会检索出相关性最高的前N个工具。 历史信息处理策略 设置处理和利用用户历史对话信息的策略。 类型:对用户历史对话信息进行截断(truncation),用于控制传递给模型的上下文长度。
准备盘古大模型训练数据集 训练数据集创建流程 模型训练所需数据量与数据格式要求 创建一个新的数据集 检测数据集质量 清洗数据集(可选) 发布数据集 创建一个训练数据集
费用按实际消耗的Token数量计算,即实际消耗的Token数量乘以Token的单价。为了帮助用户更好地管理和优化Token消耗,平台提供了Token计算器工具。Token计算器可以帮助用户在模型训练前评估文本的Token数量,提供费用预估,并优化数据预处理策略。 使用Token计算器的步骤如下:
盘古应用开发SDK 盘古应用开发SDK简介 准备工作 Java SDK Python SDK 应用实践
Java SDK 安装SDK 配置SDK LLMs(语言模型) Prompt(提示词模板) Memory(记忆) Skill(技能) Agent(智能代理) 应用示例 父主题: 盘古应用开发SDK
),帮助用户有效地将语言模型用于各种应用场景和研究领域。掌握提示词工程相关技能将有助于用户了解大型语言模型的能力和局限性。 提示工程不仅涉及设计和研发提示词,还包括与大型语言模型的交互和研发中的各种技能和技术。它在实现和对接大型语言模型、理解其能力方面扮演着关键角色。用户可以通过
配置知识库 大模型在进行训练时,使用的是通用的数据集,这些数据集没有包含特定行业的数据。通过知识库功能,用户可以将领域知识上传到知识库中,向大模型提问时,大模型将会结合知识库中的内容进行回答,解决特定领域问题回答不准的现象。 登录盘古大模型套件平台。 在左侧导航栏中选择“应用开发
管理模型资产、推理资产 查看模型资产与模型推理资产 用户购买盘古大模型套件后,可以在“平台管理 > 资产管理”中查看购买的模型资产和模型推理资产。 图1 查看模型资产 图2 查看模型推理资产 续订模型推理资产 模型推理资产到期后,可以进行续订操作。 在“平台管理 > 资产管理 >
开通盘古大模型服务 盘古大模型具备文本补全和多轮对话能力,用户在完成盘古大模型套件的订购操作后,需要开通大模型服务,才可以调用模型,实现与模型对话问答。 登录盘古大模型套件平台。 在左侧导航栏中选择“服务管理”,在相应服务的操作列单击“查看详情”,可在服务列表中申请需要开通的服务。
创建提示词工程 通过精心设计和优化提示词,可以引导大模型生成用户期望的输出,提示词工程任务的目标是通过设计和实施一系列的实验,来探索如何利用提示词来提高大模型在各种任务上的表现。 撰写提示词前需要先创建提示词工程,用于对提示词的统一管理。 登录盘古大模型套件平台。 在左侧导航栏中选择“应用开发
横向比较提示词效果 设置候选提示词 横向比较提示词效果 父主题: 提示词工程
批量评估提示词效果 创建提示词评估数据集 创建提示词评估任务 查看提示词评估结果 父主题: 提示词工程
应用实践 基础问答 长文本摘要 Agent助手 父主题: 盘古应用开发SDK
以记录和管理对话历史。对话消息存储可以根据不同的会话标识进行初始化、更新、查找和清理操作。对话消息存储还可以支持多种过滤条件,如时间范围、用户标识、消息类型等,实现对话消息的筛选和分析。 Cache Vector History 父主题: Java SDK
以记录和管理对话历史。对话消息存储可以根据不同的会话标识进行初始化、更新、查找和清理操作。对话消息存储还可以支持多种过滤条件,如时间范围、用户标识、消息类型等,实现对话消息的筛选和分析。 Cache Vector History 父主题: Python SDK
Agent流式输出 Agent用于工具调用场景,与普通的LLM流式输出相比,提供了事件流的封装。消息内容、工具调用等通过不同的事件类型区分。 通过如下接口为Agent添加流式输出的回调: /** * 设置流式接口回调函数 * * @param streamAgentCallback