检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
文生视频模型训练推理 CogVideoX1.5 5b模型基于Lite Server适配PyTorch NPU全量训练指导(6.3.912) CogVideoX模型基于Lite Server适配PyTorch NPU全量训练指导(6.3.911) Open-Sora1.2基于Lite
人工标注视频数据 由于模型训练过程需要大量有标签的视频数据,因此在模型训练之前需对没有标签的视频添加标签。通过ModelArts您可对视频添加标签,快速完成对视频的标注操作,也可以对已标注视频修改或删除标签进行重新标注。 视频标注仅针对视频帧进行标注。 开始标注 登录ModelA
Wav2Lip是一种基于对抗生成网络的由语音驱动的人脸说话视频生成模型。主要应用于数字人场景。不仅可以基于静态图像来输出与目标语音匹配的唇形同步视频,还可以直接将动态的视频进行唇形转换,输出与输入语音匹配的视频,俗称“对口型”。该技术的主要作用就是在将音频与图片、音频与视频进行合成时,口型能够自然。 方案概览
CogVideo是一个94亿参数的Transformer模型,用于文本到视频生成。通过继承一个预训练的文本到图像模型CogView2,还提出了多帧速率分层训练策略,以更好地对齐文本和视频剪辑。作为一个开源的大规模预训练文本到视频模型,CogVideo性能优于所有公开可用的模型,在机器和人类评估方面都有很大的优势。
mp4 ├── 2.mp4 ├── ... 每个 txt 与视频同名,为视频的标签。视频与标签应该一一对应。通常情况下,不使用一个视频对应多个标签。 如果为风格微调,请准备至少50条风格相似的视频和标签,以利于拟合。 修改CogVideo/sat/configs/cogvideox_*
Wav2Lip是一种基于对抗生成网络的由语音驱动的人脸说话视频生成模型。主要应用于数字人场景。不仅可以基于静态图像来输出与目标语音匹配的唇形同步视频,还可以直接将动态的视频进行唇形转换,输出与输入语音匹配的视频,俗称“对口型”。该技术的主要作用就是在将音频与图片、音频与视频进行合成时,口型能够自然。 Wa
docker exec -it ${container_name} bash Step6 安装Decord Decord是一个高性能的视频处理库,在昇腾环境中安装需要修改一些源码进行适配。 Decord建议安装在 /home/ma-user/lib中。 安装x264 mkdir
ModelArts自动学习 视频介绍 02:59 ModelArts自动学习简介 ModelArts CodeLab 视频介绍 04:16 ModelArts CodeLab介绍 JupyterLab 视频介绍 03:32 JupyterLab简介 VS Code Toolkit 视频介绍 03:32
X为按顺序自动生成的数字),具体位置打印在日志中。 Step9 推理 对于大尺寸、长时间的视频强制需要多卡推理,具体要求见下图,绿色允许只用单卡推理,蓝色至少双卡推理。 图5 推理视频要求 单卡推理 python inference.py configs/opensora-v1-2/inference/sample
pu.py --ckpt-path $CKPT_PATH 在NPU和GPU机器使用上面生成的固定随机数,分别跑一遍单机单卡推理,比较生成的视频是否一致。在NPU推理前,需要将上面GPU单机单卡推理生成的"./noise_test1"文件夹移到NPU相同目录下。NPU和GPU的推理命令相同,如下。
外网访问限制 日志提示“ Network is unreachable” 运行训练作业时提示URL连接超时 父主题: 训练作业
Wav2Lip是一种基于对抗生成网络的由语音驱动的人脸说话视频生成模型。主要应用于数字人场景。不仅可以基于静态图像来输出与目标语音匹配的唇形同步视频,还可以直接将动态的视频进行唇形转换,输出与输入语音匹配的视频,俗称“对口型”。该技术的主要作用就是在将音频与图片、音频与视频进行合成时,口型能够自然。 案例主要介绍如何基于ModelArts
命名实体:针对文本中的实体片段进行标注,如“时间”、“地点”等。 文本三元组:针对文本中的实体片段和实体之间的关系进行标注。 视频 视频标注:识别出视频中每个物体的位置及分类。目前仅支持mp4格式。 智能标注 除了人工标注外,ModelArts还提供了智能标注功能,快速完成数据标注,为您节省70%以
等。 说明: 高性能计算:主要是高带宽的需求,用于共享文件存储,比如基因测序、图片渲染这些。 如大数据分析、静态网站托管、在线视频点播、基因测序和智能视频监控等。 如高性能计算、企业核心集群应用、企业应用系统和开发测试等。 说明: 高性能计算:主要是高速率、高IOPS的需求,用于
功能总览 功能总览 全部 自动学习 Workflow 开发工具 算法管理 训练管理 AI应用管理 部署上线 镜像管理 资源池 AI Gallery ModelArts SDK 昇腾生态 自动学习 自动学习是帮助人们实现AI应用的低门槛、高灵活、零代码的定制化模型开发工具。自动学习
ModelArts-成长地图 | 华为云 ModelArts ModelArts是面向开发者的一站式AI开发平台,为机器学习与深度学习提供海量数据预处理及半自动化标注、大规模分布式Training、自动化模型生成,及端-边-云模型按需部署能力,帮助用户快速创建和部署模型,管理全周期AI工作流。
Standard数据管理提供了一套高效便捷的管理和标注数据框架。支持图片、文本、语音、视频等多种数据类型,涵盖图像分类、目标检测、音频分割、文本分类等多个标注场景,适用于计算机视觉、自然语言处理、音视频分析等AI项目场景。 ModelArts Standard数据管理模块重构中,当前
文本:对文本类数据进行处理,支持.txt、.csv格式,支持用户进行文本分类、命名实体、文本三元组三种类型的标注。 视频:对视频类数据进行处理,支持.mp4格式,支持用户进行视频标注。 自由格式:管理的数据可以为任意格式,目前不支持标注,适用于无需标注或开发者自行定义标注的场景。如果您的
命名实体:针对文本中的实体片段进行标注,如“时间”、“地点”等。 文本三元组:针对文本中的实体片段和实体之间的关系进行标注。 视频 视频标注:识别出视频中每个物体的位置及分类。目前仅支持mp4格式。 前提条件 在进行数据标注前,需要创建相应类型的数据集。具体步骤参考创建数据集。 操作步骤 登录Mod
通过人工标注方式标注数据 创建ModelArts人工标注作业 人工标注图片数据 人工标注文本数据 人工标注音频数据 人工标注视频数据 管理标注数据 父主题: 标注ModelArts数据集中的数据