检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
为什么我的计算结果每次计算时结果都不一样? 当空间开启了“结果差分隐私”开关时, 对敏感数据字段的sum操作都会添加一个差分噪声,来保护单条敏感数据不被泄露。 如果需要更精确的结果, 可联系空间管理员关闭“结果差分隐私”开关, 或者联系敏感字段的合作方修改字段分类。
一个CCE集群可以为同一用户的多个空间使用吗? TICS计算节点支持部署到CCE集群上。但当前在购买TICS服务时仅支持直接创建CCE集群,不支持选择已有的CCE集群。 因此一个CCE集群只能供一个空间使用,且必须是随TICS服务购买时直接创建的CCE集群,不能是已有集群。 CCE
发布数据集 企业A和企业B分别将自己的csv数据文件上传到自己的计算节点上,通过“数据管理”模块创建各自的数据集,并单击“发布”。 以企业A为例,数据集信息如下: 隐私求交场景需要将求交的字段设置为“非敏感”的唯一标识。 父主题: 隐私求交黑名单共享场景
创建实时隐匿查询作业 实时隐匿查询作业需要由数据查询方创建作业,企业A单击“作业管理 > 隐匿查询 > 实时隐匿查询”页面的创建按钮,填写相关信息,例如: 其中“不可区分度”即为实时隐匿查询的安全级别,不可区分度越高,则安全级别越高,但查询的速度会变慢,传输的数据量也会变大。 企业
数据集发布 前提条件 完成数据准备工作。 操作步骤 进入TICS服务控制台。 在计算节点管理中,找到购买的计算节点,通过登录地址,进入计算节点控制台。 图1 前往计算节点 登录计算节点后,在下图所述位置新建连接器。 图2 新建连接器 输入正确的连接信息,建立数据源和计算节点之间的安全连接
阶段二:隐私规则防护 使用TICS的隐私规则防护能力确保数据安全。 前提条件 完成数据发布。 操作步骤 进入多方安全计算的作业执行界面,单击创建。 图1 创建作业 在作业界面中,按照1~4提供的案例和SQL语句进行作业测试。 图2 作业界面 假设有人输入以下代码试图直接查询敏感数据
获取纵向联邦作业详情 功能介绍 获取纵向联邦作业详情 调用方法 请参见如何调用API。 URI GET /v1/{project_id}/leagues/{league_id}/fl-vertical-jobs/{job_id} 表1 路径参数 参数 是否必选 参数类型 描述 project_id
基本计算能力验证 验证TICS的基础计算能力,以计算各企业在2021年的价值评分,用于评估信贷能力,其中的公式仅为简单的参考计算式。 操作步骤 执行如下的sql作业。 select c.id as `企业id`, 0.5 * a.tax_bal + 0.8 * b.supp_bal
查看求交结果 隐私求交作业执行完成后,企业A可以通过单击“历史作业 > 查看结果”看到隐私求交作业的运行结果,包括交集的大小和交集文件的路径。 打开obs到指定目录下查看,可以看到有两个结果文件,其中一个是交集记录的序号alignedIds.csv,另一个是交集记录的id alignedOriginalIds.csv
查询联邦预测作业列表 功能介绍 查询联邦预测作业列表 调用方法 请参见如何调用API。 URI GET /v1/{project_id}/leagues/{league_id}/fl-predicted-jobs 表1 路径参数 参数 是否必选 参数类型 描述 project_id
查询训练作业下的成功模型 功能介绍 查询训练作业下的成功模型 调用方法 请参见如何调用API。 URI GET /v1/{project_id}/leagues/{league_id}/fl-job-instances 表1 路径参数 参数 是否必选 参数类型 描述 project_id
使用TICS联邦预测进行新数据离线预测 场景描述 准备数据 发布数据集 创建联邦预测作业 发起联邦预测 父主题: 纵向联邦建模场景
乳腺癌数据集作业结果 本节实验包含了如下三个部分:(1)训练轮数对联邦学习模型分类性能的影响;(2)迭代次数对联邦学习模型分类性能的影响;(3)参与方数据量不同时,本地独立训练对比横向联邦的模型性能。 不同训练参数对模型准确率、训练时长的影响 训练轮数对模型准确率的影响(迭代次数固定为
阶段四:基本计算能力验证 验证TICS的基础计算能力,以计算各企业在2021年的价值评分,用于评估信贷能力,其中的公式仅为简单的参考计算式。 前提条件 完成审批防护。 操作步骤 执行如下的sql作业。 select c.id as `企业id`, 0.5 * a.tax_bal
查询空间已注册数据集列表 功能介绍 功能描述:用户可以使用该接口查询空间已注册数据集列表。 调用方法 请参见如何调用API。 URI GET /v1/{project_id}/leagues/{league_id}/datasets 表1 路径参数 参数 是否必选 参数类型 描述
训练型横向联邦作业流程 联邦学习分为横向联邦及纵向联邦。相同行业间,特征一致,数据主体不同,采用横向联邦。不同行业间,数据主体一致,特征不同,采用纵向联邦。xx医院的应用场景为不同主体的相同特征建模,因此选用横向联邦。 创建训练型横向联邦学习作业。 图1 创建训练型横向联邦学习作业
获取可信计算节点访问token 功能介绍 本接口用于获取访问token。 用户使用账号密码获取访问token,有效期一天。 账户密码错误超过五次,账户将被锁定1分钟。 调用方法 请参见如何调用API。 URI POST /v1/agent/user/token 请求参数 表1 请求
使用TICS可信联邦学习进行联邦建模 场景描述 准备数据 发布数据集 创建可信联邦学习作业 选择数据 样本对齐 筛选特征 模型训练 模型评估 父主题: 纵向联邦建模场景
执行实时隐匿查询作业 企业A在发起实时隐匿查询前需要先执行数据初始化。 待实时预测作业初始化完成后,企业A可以通过页面单击“执行”试用发起查询。 例如查询id为“19581e27de7ced00ff1ce50b2047e7a567c76b1cbaebabe5ef03f7c3017bb5b7
选择数据 首先企业A要在“数据选择”页面选择双方发布的数据集,已选择的数据集会出现在右侧,所选的数据集会用于后续的步骤。 父主题: 使用TICS可信联邦学习进行联邦建模