检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
权重。量化后的权重包括原始权重和kvcache的scale系数。 抽取kv-cache量化系数。 该步骤的目的是将步骤1中生成的scale系数提取到单独文件中,供推理时使用。 使用的抽取脚本由vllm社区提供: python3 examples/fp8/extract_scales
d/nv_peer_mem start 如果执行失败,可能是未加载nv_peer_mem.conf至/etc/infiniband/中或nv_peer_mem不在/etc/init.d/中。 若找不到相关文件的问题,可以搜索相关文件在哪里,然后复制到指定目录,例如可执行如下命令: cp /tmp/nvidia-peer-memory-1
发布和管理AI Gallery数据集 发布和管理AI Gallery项目 发布和管理AI Gallery镜像 发布和管理AI Gallery中的AI应用 使用AI Gallery微调大师训练模型 使用AI Gallery在线推理服务部署模型 Gallery CLI配置工具指南 计算规格说明
训练脚本说明参考 训练启动脚本说明和参数配置 训练的数据集预处理说明 训练中的权重转换说明 训练tokenizer文件说明 离线训练安装包准备说明 父主题: 主流开源大模型基于DevServer适配ModelLink PyTorch NPU训练指导(6.3.910)
步骤一:配置精度测试环境 获取精度测试代码。精度测试代码存放在代码包AscendCloud-LLM的llm_tools/llm_evaluation目录中,代码目录结构如下。目前使用的opencompass版本是0.2.6 benchmark_eval ├──opencompass.sh
1_preprocess_data.sh 、2_convert_mg_hf.sh中的具体python指令,并在Notebook环境中运行执行。用户可通过Notebook中创建.ipynb文件,并编辑以下代码可实现Notebook环境中的数据与OBS中的数据进行相互传递。 import moxing as mox
LabelingStep 属性 描述 是否必填 数据类型 name 数据集标注节点的名称,命名规范(只能包含英文字母、数字、下划线(_)、中划线(-),并且只能以英文字母开头,长度限制为64字符),一个Workflow里的两个step名称不能重复 是 str inputs 数据集标注节点的输入列表
本案例需要创建一个Notebook,以便能够通过它访问SFS Turbo服务。随后,通过Notebook将OBS中的数据上传至SFS Turbo,并对存储在SFS Turbo中的数据执行编辑操作。 预训练 预训练 介绍如何进行预训练,包括训练数据处理、超参配置、创建训练任务及性能查看。
软件配套版本 表1 获取软件 分类 名称 获取路径 插件代码包 AscendCloud-6.3.908软件包中的AscendCloud-AIGC-6.3.908-xxx.zip 文件名中的xxx表示具体的时间戳,以包名发布的实际时间为准。 获取路径:Support-E 说明: 如果上述软
查看在线服务详情 查看在线服务的事件 管理在线服务生命周期 修改在线服务配置 在云监控平台查看在线服务性能指标 集成在线服务API至生产环境中应用 设置在线服务故障自动重启 父主题: 使用ModelArts Standard部署模型并推理预测
配置Workflow的输入输出目录 创建Workflow节点 构建Workflow多分支运行场景 编排Workflow 发布Workflow 在Workflow中更新已部署的服务 Workflow高阶能力 父主题: 使用Workflow实现低代码AI开发
Cluster监控指标。 AOM上查看已有监控指标 登录控制台,搜索AOM,进入“应用运维管理 AOM”控制台。 单击“监控 > 指标浏览”,进入“指标浏览”“页面”,单击“添加指标查询”。 图1 示例图片 添加指标查询信息。 图2 示例图片 添加方式:选择“按指标维度添加”。 指标名称:在右侧下拉框
及 llama3,其中llama1、2及chat都填写llama model_name:模型地址 data_path:预训练数据集地址 即一中生成的文件地址 seed:生成训练data所使用的seed(此处42为开源训练设定参数) max_length:模型的max_length dtype:为模型dtype
PyCharm Toolkit使用 安装ToolKit工具时出现错误,如何处理? PyCharm ToolKit工具中Edit Credential时,出现错误 为什么无法启动训练? 提交训练作业时,出现xxx isn't existed in train_version错误 提交训练作业报错“Invalid
Turbo文件系统联动,可以实现数据灵活管理、高性能读取数据等。通过OBS上传训练所需的模型文件、训练数据等,再将OBS中的数据文件导入到SFS Turbo,然后在训练作业中挂载SFS Turbo到容器对应ckpt目录,实现分布式读取训练数据文件。 约束限制 如果要使用自动重启功能,资源规格必须选择八卡规格。
云硬盘提供高可靠、高性能、规格丰富并且可弹性扩展的块存储服务,数据持久性高达99.9999999%。 训练故障自动恢复 用户在训练模型过程中,存在因硬件故障而产生的训练失败场景。针对硬件故障场景,ModelArts提供容错检查功能,帮助用户隔离故障节点,优化用户训练体验。 容错检
软件配套版本 表1 获取软件 分类 名称 获取路径 插件代码包 AscendCloud-6.3.908软件包中的AscendCloud-AIGC-6.3.908-xxx.zip 文件名中的xxx表示具体的时间戳,以包名发布的实际时间为准。 获取路径:Support-E 说明: 如果上述软
软件配套版本 表1 获取软件 分类 名称 获取路径 插件代码包 AscendCloud-6.3.907软件包中的AscendCloud-AIGC-6.3.907-xxx.zip 文件名中的xxx表示具体的时间戳,以包名发布的实际时间为准。 获取路径:Support-E 说明: 如果上述软
float32) # 保存网络输入为二进制文件 image.tofile("input_data.bin") 将基准模型的输出保存到文本文件。 本例中输出节点名称为output_node_name,输出节点的shape为“(1, 1000)”,因此一共有两维,对应的输出文件为“output_node_name
使用JupyterLab在线开发和调试代码 JupyterLab常用功能介绍 在JupyterLab使用Git克隆代码仓 在JupyterLab中创建定时任务 上传文件至JupyterLab 下载JupyterLab文件到本地 在JupyterLab中使用MindInsight可视化作业