检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
操作步骤 在图引擎编辑器左侧的操作区内,单击“编辑”后,下方会出现“新增操作”的按钮,单击此按钮。 图1 新增操作 在弹出的新增操作框中填写以下参数: 自定义操作名称:填写名称,方便后续快速查找和使用。 API类型:目前有Cypher查询,Gremlin查询,算法,路径查询等四个类型可供选择。
进行扩副本操作后,不支持扩容图操作。 如果要对图进行扩容和扩副本两个操作,需要您先进行扩容图操作,再进行扩副本操作。 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。 URI POST /v1.
k跳算法从起点出发,通过宽度优先搜索(BFS),找出k层与之关联的所有节点。找到的子图称为起点的“ego-net”。k跳算法会返回ego-net中节点及其个数。 URI POST /ges/v1.0/{project_id}/hyg/{graph_name}/algorithm 表1 路径参数
处于关闭状态的图不计算实例费用。 您最多可以停止7天,如果您在7天后未手动启动图实例,则图实例将自动启动。 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。 URI POST /v2/
Node2vec算法 概述 Node2vec算法通过调用word2vec算法,把网络中的节点映射到欧式空间,用向量表示节点的特征。 Node2vec算法通过回退参数 P 和前进参数 Q 来生成从每个节点出发的随机步,带有BFS和DFS的混合,回退概率正比于1/P,前进概率正比于1
Vertex Sets)可以得到两个点集合(群体集合)所共有的邻居(即两个群体临域的交集),直观的发现与两个群体共同联系的对象,如发现社交场合中的共同好友、消费领域共同感兴趣的商品、社区群体共同接触过的人,进一步推测两点集合之间的潜在关系和联系程度。 适用场景 点集共同邻居算法适用于
源起点之间的距离。具体操作步骤如下: 在左侧“动态图”操作区的“动态拓展”模块内填写参数: 开始和结束的时间以及属性值在上述章节时间轴设置中已经设置完成,如果要修改参数,单击画布左下方进行设置在时间轴设置框内填写,此处不可填写。 sources:指定单个节点作为起始节点ID。 k
k核算法(kcore) 功能介绍 根据输入参数,执行K核算法。 K核算法是图算法中的一个经典算法,用以计算每个节点的核数。其计算结果是判断节点重要性最常用的参考值之一,较好的体现了节点的传播能力。 URI POST /ges/v1.0/{project_id}/hyg/{graph_name}/algorithm
filter criteria for vertex queries. 点过滤查询条件不合法 检查点过滤查询API中propertyName(属性名称)是否为空。 检查点过滤查询API中values(属性值)是否为空。 若继续失败,则根据errorMessage查看错误信息联系技术支持人员。
除存储在OBS中的数据。 导入目录下的单文件或者导入的单文件大小不能超过5GB,如果超过5GB,则会导入失败,建议把文件拆成小于5GB的多个文件后再导入。 单次导入的文件总大小(包括点、边数据集)不能超过可用内存的1/5。可用内存参考“运维监控看板”的“节点监控”中名称后缀为ge
parameter. 参数错误 检查URL中的project_id或者GraphID是否正确。 检查请求头是否正确,比如X-Auth-Token是否正确。 400 GES.0016 Resource not found 未找到资源 检查url中的project_id与token的项目的id是否一致。
工业应用、企业IT应用等场景。 互联网应用 在移动互联网时代,面对庞大的社交关系,媒体传播网络,GES可以帮助客户快速、有效的发现海量数据中隐含的信息。 该场景能帮助您实现以下功能。 推荐好友、商品或资讯 通过好友关系、用户画像、行为相似性、商品相似性、资讯传播的途径等,实现好友、商品或资讯的个性化推荐。
续费概述 续费简介 目前图引擎服务(GES)提供包年/包月、按需计费模式。 对于包年/包月模式,您在购买时一次性付费,使用过程中不会再额外计费。包周期到期后,资源会依次进入宽限期、保留期,若需要继续使用,请及时续费。详情请参见资源到期说明。 对于按需计费模式,系统会按小时扣减费用
如果要对图进行变更规格和扩副本两个操作,需要您先进行变更图规格操作,再进行扩副本操作。 持久化版图不支持调用接口进行扩副本操作。 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。 URI POST /v2/
k跳算法(k-hop)从起点出发,通过宽度优先搜索(BFS),找出k层与之关联的所有节点。找到的子图称为起点的“ego-net”。k跳算法会返回ego-net中节点的个数。 适用场景 k跳算法(k-hop)适用于关系发现、影响力预测、好友推荐等场景。 参数说明 表1 k跳算法(k-hop)参数说明 参数
在图引擎编辑器的左侧的元数据列表中,单击元数据旁的“眼睛”按钮,可在图分析结果中隐藏该元数据的所有点和边。 图4 隐藏label 隐藏当前选择的label的点和边 在绘图区,单击图中任意一个点,被选中的点会显示为。 表示label隐藏。在图数据中默认是全部展示的,单击label旁
的动态演化过程 。具体操作步骤如下: 在左侧“动态图”操作区的“群体演化”模块内填写参数。 开始和结束的时间以及属性值在上述章节时间轴设置中已经设置完成,如果要修改参数,单击画布左下方进行设置在时间轴设置框内填写,此处不可填写。 sources:表示群体内包含的节点ID,最多可以
Cesna算法(cesna) 功能介绍 根据输入参数,执行Cesna算法。 Cesna算法是一种重叠社区发现算法,该算法将节点与社区之间的关系建模为一个二部图,假设图中节点的连边是根据社区关系生成的。此外,该算法还利用了节点属性对社区进行建模,即假设节点的属性也是根据社区关系生成的。 URI POST /ges/v1
GES的元数据用于定义点和边的属性信息,为XML格式的文件。 在元数据中包含了标签(Label)和属性(Property)。 标签(Label) 标签是属性的集合,描述了一个点或边拥有的所有属性的数据格式。 在不同的标签中,如果定义了相同的属性名称(Property name),则定义
动态图数据格式 在大多数实际生活场景中,实体以及关系是动态变化的(如疫情传播网络、转账关系等),这些时序、变化背后蕴含的信息会对结果产生重要影响,因此需要采用动态图对其进行数据建模、存储和动态分析。本服务对动态图的相关能力进行了支持。 图1 动态图示例 本章节重点介绍动态图数据格