检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
查看日志定位处理问题,或者联系技术支持。 Backend model template selection error (metadata error). 后台模型模板选择错误。 查看日志定位处理问题,或者联系技术支持。 Failed to read standard config.json in the
容器中执行训练的命令。Llama2-70B建议为4机32卡训练。 多机启动 以 Llama2-70B 为例,修改多机config.yaml模板中的${command}命令如下。多机启动需要在每个节点上执行。MASTER_ADDR为当前ssh远程主机的IP地址(私网IP)。 # 多机执行命令为:sh
AlpacaStyleInstructionHandler:使用LLama-Factory模板Alpaca数据集 SharegptStyleInstructionHandler:使用LLama-Factory模板Sharegpt数据集 其他参数设置,详解如下: 参数 示例值 参数说明 stage
"output": "模型回答(必填)", } ] 训练数据构造:在 _filter 函数中会使用 Alpaca 微调指令的模板 self.prompter 将数据集中 instruction、input、output 关键字的内容进行拼接,并用于训练。拼接方式如下,其中
"output": "模型回答(必填)", } ] 训练数据构造:在 _filter 函数中会使用 Alpaca 微调指令的模板 self.prompter 将数据集中 instruction、input、output 关键字的内容进行拼接,并用于训练。拼接方式如下,其中
huaweicloud.com/home中,搜索pypi ,也可以查看“pip.conf”文件内容。 下载“torch*.whl ”文件。 在网站“https://download.pytorch.org/whl/torch_stable.html”搜索并下载如下whl文件。 torch-1
"output": "模型回答(必填)", } ] 训练数据构造:在 _filter 函数中会使用 Alpaca 微调指令的模板 self.prompter 将数据集中 instruction、input、output 关键字的内容进行拼接,并用于训练。拼接方式如下,其中
"output": "模型回答(必填)", } ] 训练数据构造:在 _filter 函数中会使用 Alpaca 微调指令的模板 self.prompter 将数据集中 instruction、input、output 关键字的内容进行拼接,并用于训练。拼接方式如下,其中
"output": "模型回答(必填)", } ] 训练数据构造:在 _filter 函数中会使用 Alpaca 微调指令的模板 self.prompter 将数据集中 instruction、input、output 关键字的内容进行拼接,并用于训练。拼接方式如下,其中
"output": "模型回答(必填)", } ] 训练数据构造:在 _filter 函数中会使用 Alpaca 微调指令的模板 self.prompter 将数据集中 instruction、input、output 关键字的内容进行拼接,并用于训练。拼接方式如下,其中
"output": "模型回答(必填)", } ] 训练数据构造:在 _filter 函数中会使用 Alpaca 微调指令的模板 self.prompter 将数据集中 instruction、input、output 关键字的内容进行拼接,并用于训练。拼接方式如下,其中
"output": "模型回答(必填)", } ] 训练数据构造:在 _filter 函数中会使用 Alpaca 微调指令的模板 self.prompter 将数据集中 instruction、input、output 关键字的内容进行拼接,并用于训练。拼接方式如下,其中
huaweicloud.com/home中,搜索pypi ,也可以查看“pip.conf”文件内容。 下载“torch*.whl ”文件。 在网站“https://download.pytorch.org/whl/torch_stable.html”搜索并下载如下whl文件。 torch-1
"output": "模型回答(必填)", } ] 训练数据构造:在 _filter 函数中会使用 Alpaca 微调指令的模板 self.prompter 将数据集中 instruction、input、output 关键字的内容进行拼接,并用于训练。拼接方式如下,其中
├──cpu_npu # 检测资源消耗 ├── config │ ├── config.json # 服务的配置模板,已配置了ma-standard,tgi示例 │ ├── mmlu_subject_mapping.json # mmlu数据集学科信息
n目录中,代码目录结构如下: benchmark_eval ├── config │ ├── config.json # 服务的配置模板,已配置了ma-standard,tgi示例 │ ├── mmlu_subject_mapping.json # mmlu数据集学科信息
数据格式化时使用的前缀。 instruction_template String 数据格式化时使用的指令模板。 response_template String 数据格式化时使用的回答模板。 lora_alpha int Lora scaling的alpha参数。 lora_dropout
AlpacaStyleInstructionHandler:使用LLama-Factory模板Alpaca数据集 SharegptStyleInstructionHandler:使用LLama-Factory模板Sharegpt数据集 micro-batch-size 1 表示流水线并行中一个micro
--configFile=aoe_config.ini 命令执行成功后,性能自动优化前后的性能对比会打印到控制台上,同时会生成更为详细的json格式调优报告。 图2 自动调优输出文件 需要注意的是,并不是所有的模型使用性能自动调优都是有收益的。在本例中,ResNet50模型自动调优收益甚微(模
AlpacaStyleInstructionHandler:使用LLama-Factory模板Alpaca数据集 SharegptStyleInstructionHandler:使用LLama-Factory模板Sharegpt数据集 MBS 4 表示流水线并行中一个micro batch所