检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
是一个excel文件,每行数据是需要输入的变量值信息,可以通过“导入”功能进行上传。 图1 效果预览 单击“查看效果”,输出模型回复结果,用户可以基于预览的效果调整提示词文本和变量。 父主题: 撰写提示词
节,帮助用户高效构建高质量的训练数据集,推动AI应用的成功落地。具体功能如下: 数据获取:用户可以轻松将多种类型的数据导入ModelArts Studio大模型开发平台,支持的数据类型包括文本、图片、视频、气象、预测数据以及用户自定义的其他类型数据。平台提供灵活的数据接入方式以及
步骤4:配置对话体验 应用支持配置对话体验功能,该功能可以提升用户与应用之间的互动质量和个性化体验,包括开场白、推荐问题。 开场白:开场白是用户与应用进行首次交互时,应用主动向用户展示的一段内容。 推荐问题:推荐问题是用户首次与应用互动时,应用主动展示的一些问题或话题建议。 配置对话体验的步骤如下:
查看提示词评估结果 评估任务创建完成后,会跳转至“评估”页面,在该页面可以查看评估状态。 图1 查看提示词评任务状态 单击“评估名称”,进入评估任务详情页,可以查看详细的评估进度,例如在图2中有10条评估用例,当前已评估8条,剩余2条待评估。 图2 查看评估进展 评估完成后,可以查看每条数据的评估结果。
工作流介绍 Agent开发平台的工作流由多个节点构成,节点是组成工作流的基本单元。平台支持多种节点,包括开始、结束、大模型、意图识别、提问器、插件、判断、代码和消息节点。 创建工作流时,每个节点需要配置不同的参数,如输入和输出参数等,开发者可通过拖、拉、拽可视化编排更多的节点,实
行如文案生成、代码生成和专业问答等特定场景中的任务。在微调过程中,通过设定训练指标来监控模型的表现,确保其达到预期的效果。完成微调后,将对用户模型进行评估并进行最终优化,以确保满足业务需求,然后将其部署和调用,用于实际应用。 NLP大模型选择建议 选择合适的NLP大模型类型有助于
加工视频类数据集 清洗视频类数据集 标注视频类数据集 父主题: 加工数据集
加工气象类数据集 清洗气象类数据集 父主题: 加工数据集
模型训练过程中出现了非预期的异常情况,需查看日志定位训练异常原因。 训练异常 模型训练过程中出现了非预期的异常情况,需查看日志定位训练异常原因。 已停止 模型训练已被用户手动停止。 查看训练指标 对于训练状态为“已完成”的任务,单击任务名称,可在“训练结果”页面查看训练指标,模型的训练指标介绍请参见表2。 表2
表格数据。支持上传常见的表格文件格式,便于管理和分析结构化数据,包括:xlsx、xls、csv格式。 无论是文本文档、演示文稿,还是电子表格文件,用户都可以轻松地将数据导入知识库,无需额外的转换或格式处理。 父主题: 创建与管理知识库
数据集清洗算子介绍 文本类清洗算子能力清单 视频类清洗算子能力清单 图片类清洗算子能力清单 气象类清洗算子能力清单 父主题: 加工数据集
”、“盘古格式”,以满足不同训练任务的需求。通过这些格式的转换,用户可以确保数据与特定模型(如盘古大模型)兼容,并优化训练效果。 提高训练效率 发布符合标准的数据集可以大幅提升数据处理效率,减少后续调整工作,帮助用户快速进入模型训练阶段。 数据集发布是数据工程中的关键环节,通过科
发布文本类数据集 评估文本类数据集 配比文本类数据集 流通文本类数据集 父主题: 发布数据集
发布视频类数据集 评估视频类数据集 流通视频类数据集 父主题: 发布数据集
加工文本类数据集 清洗文本类数据集 合成文本类数据集 标注文本类数据集 父主题: 加工数据集
模型训练过程中出现了非预期的异常情况,需查看日志定位训练异常原因。 训练异常 模型训练过程中出现了非预期的异常情况,需查看日志定位训练异常原因。 已停止 模型训练已被用户手动停止。 查看训练指标 对于训练状态为“已完成”的任务,单击任务名称,可在“训练结果”页面查看训练指标,模型的训练指标介绍请参见图1。 图1
上进一步训练,使模型能够更有效地应对具体的任务需求。在微调过程中,通过设定训练指标来监控模型的表现,确保其达到预期的效果。完成微调后,将对用户模型进行评估并进行最终优化,以确保满足业务需求,然后将其部署和调用,用于实际应用。 预测大模型选择建议 选择合适的预测大模型类型有助于提升
模型训练过程中出现了非预期的异常情况,需查看日志定位训练异常原因。 训练异常 模型训练过程中出现了非预期的异常情况,需查看日志定位训练异常原因。 已停止 模型训练已被用户手动停止。 查看训练指标 对于训练状态为“已完成”的任务,单击任务名称,可在“训练结果”页面查看训练指标,模型的训练指标介绍请参见表2。 图1
上进一步训练,使模型能够更有效地应对具体的任务需求。在微调过程中,通过设定训练指标来监控模型的表现,确保其达到预期的效果。完成微调后,将对用户模型进行评估并进行最终优化,以确保满足业务需求,然后将其部署和调用,用于实际应用。 CV大模型选择建议 选择合适的CV大模型类型有助于提升
通过平台提供的自动化加工功能,用户可以高效完成大规模数据的预处理工作,减少人工干预,提升数据处理的一致性和效率,确保整个数据工程流程的顺畅运行。 总体而言,数据加工不仅提升了数据处理的效率,还可通过优化数据质量和针对性处理,支持高效的模型训练。通过数据加工,用户能够快速构建高质量的数据集,推动大模型的成功开发。