检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
时长时,系统将会暂停作业。时长设置不能超过计算资源的剩余额度。 说明: 如果选择付费资源,则请确认账号未欠费,且余额高于所选计算规格的收费标准,否则可能会导致AI Gallery工具链服务异常中断。AI Gallery的计算规格的计费说明请参见计算规格说明。 AI应用封面图 否
al_algorithm/OpenSora1.2/,将OpenSora1.2整个文件夹上传到宿主机上。 Step3 构建标准镜像和容器环境 Step3 构建标准镜像和容器环境 和 Step4 构建与代码解耦的镜像和容器环境 都是搭建容器环境,任选其中一个即可。 一、构建镜像 基于
在线服务和边缘服务有什么区别? 在线服务 将模型部署为一个Web服务,您可以通过管理控制台或者API接口访问在线服务。 边缘服务 云端服务是集中化的离终端设备较远,对于实时性要求高的计算需求,把计算放在云上会引起网络延时变长、网络拥塞、服务质量下降等问题。而终端设备通常计算能力不
查看是否安装成功 nerdctl -v 安装buildkit工具。buildkit是从Docker从公司开源出来的下一代镜像构建工具,支持OCI标准的镜像构建,nerdctl需要结合buildkit一起使用。buildkit由两部分组成: buildkitd(服务端):负责镜像构建,目
方法二:使用generate_dataset.py脚本生成数据集方法: 客户通过业务数据,在generate_dataset.py脚本,指定输入输出长度的均值和标准差,生成一定数量的正态分布的数据。具体操作命令如下,可以根据参数说明修改参数。 cd benchmark_tools python generate_dataset
使用自动分组智能标注作业 为了提升智能标注算法精度,可以均衡标注多个类别,有助于提升智能标注算法精度。ModelArts内置了分组算法,您可以针对您选中的数据,执行自动分组,提升您的数据标注效率。 自动分组可以理解为数据标注的预处理,先使用聚类算法对未标注图片进行聚类,再根据聚类
使用generate_datasets.py脚本生成数据集方法: generate_datasets.py脚本通过指定输入输出长度的均值和标准差,生成一定数量的正态分布的数据。具体操作命令如下,可以根据参数说明修改参数。 cd benchmark_tools python generate_datasets
Code(写python代码),Markdown(写Markdown代码,通常用于注释),Raw(一个转换工具),-(不修改)。 查看代码历史版本。 git插件,图标显示灰色表示当前Region不支持。 当前的资源规格。 单击可以选择Kernel。 表示代码运行状态,变为实心圆时,表示代码在运行中。 分享到AI
使用generate_datasets.py脚本生成数据集方法: generate_datasets.py脚本通过指定输入输出长度的均值和标准差,生成一定数量的正态分布的数据。具体操作命令如下,可以根据参数说明修改参数。 cd benchmark_tools python generate_datasets
ModelArts-Note-BmjiN实例,但SSH连到识别的是Host,错误地连到了Host ModelArts-Note-wZc6s这个实例。 按ssh-config的标准写法更新配置,Host这里是每组配置的唯一标识,必填项且必须放在配置文件第一行。 Host ModelArts-notebook-xxx HostName
查看是否安装成功 nerdctl -v 安装buildkit工具。buildkit是从Docker从公司开源出来的下一代镜像构建工具,支持OCI标准的镜像构建,nerdctl需要结合buildkit一起使用。buildkit由两部分组成: buildkitd(服务端):负责镜像构建,目
查看是否安装成功 nerdctl -v 安装buildkit工具。buildkit是从Docker从公司开源出来的下一代镜像构建工具,支持OCI标准的镜像构建,nerdctl需要结合buildkit一起使用。buildkit由两部分组成: buildkitd(服务端):负责镜像构建,目
数据标注场景介绍 由于模型训练过程需要大量有标签的数据,因此在模型训练之前需对没有标签的数据添加标签。您可以通过创建单人标注作业或团队标注作业对数据进行手工标注,或对任务启动智能标注添加标签,快速完成对图片的标注操作,也可以对已标注图片修改或删除标签进行重新标注。 ModelArts为用户提供了标注数据的能力:
json 使用generate_dataset.py脚本生成数据集方法: generate_datasets.py脚本通过指定输入输出长度的均值和标准差,生成一定数量的正态分布的数据。具体操作命令如下,可以根据参数说明修改参数。 cd benchmark_tools python generate_dataset
ModelArts中常用概念 自动学习 自动学习功能可以根据标注数据自动设计模型、自动调参、自动训练、自动压缩和部署模型,不需要代码编写和模型开发经验。只需三步,标注数据、自动训练、部署模型,即可完成模型构建。 端-边-云 端-边-云分别指端侧设备、智能边缘设备、公有云。 推理
方法二:使用generate_dataset.py脚本生成数据集方法: generate_dataset.py脚本通过指定输入输出长度的均值和标准差,生成一定数量的正态分布的数据。具体操作命令如下,可以根据参数说明修改参数。 python generate_dataset.py --dataset
方法二:使用generate_dataset.py脚本生成数据集方法: generate_dataset.py脚本通过指定输入输出长度的均值和标准差,生成一定数量的正态分布的数据。具体操作命令如下,可以根据参数说明修改参数。 python generate_dataset.py --dataset
训练性能测试 流程图 训练性能测试流程图如下图所示: 图1 训练性能测试流程 执行训练任务 进入test-benchmark目录执行训练命令,可以多次执行,卡数及其它配置参考NPU卡数取值表按自己实际情况决定。 单机<可选>: # 默认8卡 benchmark-cli train
方法二:使用generate_dataset.py脚本生成数据集方法: 客户通过业务数据,在generate_dataset.py脚本,指定输入输出长度的均值和标准差,生成一定数量的正态分布的数据。具体操作命令如下,可以根据参数说明修改参数。 cd benchmark_tools python generate_dataset
"true"} 状态码 表1 状态码 状态码 编码 状态码说明 200 OK 请求成功 日志文件输出 为保证日志内容可以正常显示,日志信息需要打印到标准输出。 镜像启动入口 如果需要部署批量服务,镜像的启动入口文件需要为“/home/run.sh”,采用CMD设置默认启动路径,例如Dockerfile配置如下: