检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
Cluster资源池节点故障如何定位 故障说明和处理建议 图1 Lite池故障处理流程 对于ModelArts Lite资源池,每个节点会以DaemonSet方式部署node-agent组件,该组件会检测节点状态,并将检测结果写到K8S NodeCondtition中。同时,节点
Lite Server资源配置流程 在开通Lite Server资源后,需要完成相关配置才能使用,配置流程如下图所示。 图1 Lite Server资源配置流程图 表1 Server资源配置流程 配置顺序 配置任务 场景说明 1 配置Lite Server网络 Server资源开
ModelArts Standard推理服务支持VPC直连的高速访问通道配置 背景说明 访问在线服务的实际业务中,用户可能会存在如下需求: 高吞吐量、低时延 TCP或者RPC请求 因此,ModelArts提供了VPC直连的高速访问通道功能以满足用户的需求。 使用VPC直连的高速访
Bert基于DevServer适配MindSpore Lite 推理指导(6.3.910) 方案概览 本方案介绍了在ModelArts的DevServer上使用昇腾Atlas 300I Duo推理卡计算资源,部署Bert-base-chinese模型推理的详细过程。完成本方案的部
迁移Standard专属资源池和网络至其他工作空间 背景信息 专属资源池的工作空间关联了企业项目,企业项目涉及到账单归集。为隔离不同子用户操作资源的权限,ModelArts提供了工作空间功能,管理员可以根据工作空间,隔离不同子用户操作工作空间内资源的权限。工作空间迁移包括资源池迁移和网络迁移,具体方法可见下文说明。
场景介绍 阅读本文前建议您先了解以下内容: Stable Diffusion的基础知识,可参考Stable Diffusion github、Stable Diffusion wikipedia、diffusers github、Stable Diffusion with diffusers。
委托授权ModelArts云服务使用SFS Turbo 本章节介绍如何配置ModelArts委托权限,允许用户使用专属资源池的网络中的“关联sfsturbo”和“解除关联”功能。 场景介绍 对于使用ModelArts专属资源池的用户,在控制台创建完网络后,在网络列表页“操作 >
SDXL&SD1.5 WebUI基于Lite Cluster适配NPU推理指导(6.3.906) 本文档主要介绍如何在ModelArts Lite的Cluster环境中部署Stable Diffusion的WebUI套件,使用NPU卡进行推理。 方案概览 本方案介绍了在ModelArts的Lite
通过VPC高速访问通道的方式访问在线服务 背景说明 访问在线服务的实际业务中,用户可能会存在如下需求: 高吞吐量、低时延 TCP或者RPC请求 因此,ModelArts提供了VPC直连的高速访问通道功能以满足用户的需求。 使用VPC直连的高速访问通道,用户的业务请求不需要经过推理
自动学习简介 自动学习功能介绍 ModelArts自动学习是帮助人们实现模型的低门槛、高灵活、零代码的定制化模型开发工具。自动学习功能根据标注数据自动设计模型、自动调参、自动训练、自动压缩和部署模型。开发者无需专业的开发基础和编码能力,只需上传数据,通过自动学习界面引导和简单操作即可完成模型训练和部署。
专属资源池VPC打通 通过打通VPC,可以方便用户跨VPC使用资源,提升资源利用率。 步骤一:打通VPC 通过打通VPC,可以方便用户跨VPC使用资源,提升资源利用率。 登录ModelArts管理控制台,在左侧导航栏中选择“AI专属资源池 > 弹性集群Cluster”,在“网络”
LLaVA模型基于DevServer适配PyTorch NPU预训练指导(6.3.906) LLaVA是一种新颖的端到端训练的大型多模态模型,它结合了视觉编码器和Vicuna,用于通用的视觉和语言理解,实现了令人印象深刻的聊天能力,在科学问答(Science QA)上达到了新的高度。
PyCharm ToolKit工具中Edit Credential时,出现错误 问题现象 PyCharm ToolKit工具中Edit Credential时,提示Validate Credential error。 或 原因分析 可能原因一:Region等信息配置不正确 可能原
准备镜像环境 准备训练模型适用的容器镜像,包括获取镜像地址,了解镜像中包含的各类固件版本,配置物理机环境操作。 镜像地址 本教程中用到的训练和推理的基础镜像地址和配套版本关系如下表所示,请提前了解。 表1 基础容器镜像地址 镜像用途 镜像地址 基础镜像 swr.cn-southwest-2
准备镜像环境 准备训练模型适用的容器镜像,包括获取镜像地址,了解镜像中包含的各类固件版本,配置物理机环境操作。 镜像地址 本教程中用到的训练和推理的基础镜像地址和配套版本关系如下表所示,请提前了解。 表1 基础容器镜像地址 镜像用途 镜像地址 基础镜像 swr.cn-southwest-2
准备镜像环境 准备训练模型适用的容器镜像,包括获取镜像地址,了解镜像中包含的各类固件版本,配置物理机环境操作。 镜像地址 本教程中用到的训练和推理的基础镜像地址和配套版本关系如下表所示,请提前了解。 表1 基础容器镜像地址 镜像用途 镜像地址 基础镜像 swr.cn-southwest-2
Open-Sora-Plan1.0基于DevServer适配PyTorch NPU训练推理指导(6.3.907) 本文档主要介绍如何在ModelArts Lite DevServer上,使用PyTorch_npu+华为自研Ascend Snt9B硬件,完成Open-Sora-Plan1
基于MindSpore Lite的模型转换 迁移推理业务的整体流程如下: 模型准备 转换关键参数准备 模型转换 推理应用适配 主要通过MindSpore Lite(简称MSLite)进行模型的转换,进一步通过MindSpore Runtime支持昇腾后端的能力来将推理业务运行到昇腾设备上。
精度对齐 精度问题是指模型从GPU设备迁移到昇腾NPU设备之后由于软硬件差异引入的精度问题。根据是否在单卡环境下,可分为单卡精度问题与多卡精度问题。多卡相对于单卡,会有卡与卡之间的通信,这可能也是精度偏差的一种来源。所以多卡的精度对齐问题相对于单卡会更复杂。不过针对多卡的精度问题
Open-Clip基于DevServer适配PyTorch NPU训练指导 Open-Clip广泛应用于AIGC和多模态视频编码器的训练。 方案概览 本方案介绍了在ModelArts的DevServer上使用昇腾NPU计算资源开展Open-clip训练的详细过程。完成本方案的部署