检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
同一个自动学习项目可以训练多次,每次训练会注册一个新的模型一个版本。如第一次训练版本号为“0.0.1”,下一个版本为“0.0.2”。基于训练版本可以对训练模型进行管理。当训练的模型达到目标后,再执行模型部署的操作。 评估结果说明 根据训练数据类的不同评估结果会包含不同的指标。 离散值评估结果 包含评估指
1:8080/${推理服务的请求路径} 推理部署示例 本节将详细说明以自定义引擎方式创建模型的步骤。 创建模型并查看模型详情 登录ModelArts管理控制台,进入“模型管理”页面中,单击“创建模型”,进入模型创建页面,设置相关参数如下: 元模型来源:选择“从对象存储服务(OBS)中选择”。 选择元模型:从OBS中选择一个模型包。
在Notebook中复制模型包 登录ModelArts控制台,在左侧导航栏中选择“开发空间 > Notebook”,进入“Notebook”管理页面。 单击右上角“创建”,进入“创建Notebook”页面,请参见如下说明填写参数。 填写Notebook基本信息,包含名称、描述、是否自动停止。
前ModelArts支持的所有分析指标请参见支持分析指标及其说明。 数据特征分析 登录ModelArts管理控制台,在左侧菜单栏中选择“资产管理>数据集”,进入“数据集”管理页面。 选择对应的数据集,单击操作列的“更多 > 数据特征”,进入数据集概览页的数据特征页面。 您也可以在
strip() + ' ' + eos_token }}{% endif %}{% endfor %} 创建我的模型 登录ModelArts管理控制台。 在左侧导航栏中,选择“ModelArts Studio”进入ModelArts Studio大模型即服务平台。 在ModelArts
cd YOLOX sed -i 's/\r//' run.sh Shell脚本在Windows系统编写时,每行结尾是\r\n,而在Linux系统中行每行结尾是\n,所以在Linux系统中运行脚本时,会认为\r是一个字符,导致运行报错“$'\r': command not foun
Swin-Transformer sed -i 's/\r//' run.sh Shell脚本在Windows系统编写时,每行结尾是\r\n,而在Linux系统中行每行结尾是\n,所以在Linux系统中运行脚本时,会认为\r是一个字符,导致运行报错“$'\r': command not foun
对应的内容会与 input 对应的内容拼接后作为指令,即指令为 instruction\ninput。 output:生成的指令的答案。 system:系统提示词,用来为整个对话设定场景或提供指导原则。 history: 一个列表,包含之前轮次的对话记录,每一对都是用户消息和模型回复。这有助于保持对话的一致性和连贯性。
Glob os.listdir mox.file.list_directory(..., recursive=False) tf.gfile.ListDirectory os.makedirs mox.file.make_dirs tf.gfile.MakeDirs os.mkdir
URL、Function calling等信息。 表1 配置说明 配置项 说明 模型名称 MaaS服务调用界面显示的模型名称。 API Key MaaS鉴权管理界面中创建的API Key。具体操作,请参见步骤1:获取API Key。 API Endpoint URL 服务调用界面中MaaS服务的基
5版本,如果非该版本号则在代码开始处执行: import os os.system('pip install numpy==1.18.5') 如果依旧有报错情况,将以上代码修改为: import os os.system('pip install numpy==1.18.5') os.system('pip install
重新发送。 import os os.environ['PS_VERBOSE'] = '2' os.environ['PS_RESEND'] = '1' 其中,“os.environ['PS_VERBOSE'] = '2'”为打印所有的通信信息。“os.environ['PS_RESEND']
针对不同的数据量和算法情况,推荐以下训练方案: 单机单卡:小数据量(1G训练数据)、低算力场景(1卡Vnt1),存储方案使用“OBS的并行文件系统(存放数据和代码)”。 单机多卡:中等数据量(50G左右训练数据)、中等算力场景(8卡Vnt1),存储方案使用“SFS(存放数据和代码)”。
aarch64 docker-engine-selinux.noarch docker-runc.aarch64 配置IP转发,用于容器内的网络访问。执行以下命令查看net.ipv4.ip_forward配置项的值,如果为1,可跳过此步骤。 sysctl -p | grep net
sh ./scripts/llama2/0_pl_sft_13b.sh 创建训练作业时,可开启自动重启功能。当环境问题导致训练作业异常时,系统将自动修复异常或隔离节点,并重启训练作业,提高训练成功率。为了避免丢失训练进度、浪费算力。此功能已适配断点续训练。 图2 开启故障重启 断
sh ./scripts/llama2/0_pl_lora_13b.sh 创建训练作业时,可开启自动重启功能。当环境问题导致训练作业异常时,系统将自动修复异常或隔离节点,并重启训练作业,提高训练成功率。为了避免丢失训练进度、浪费算力。此功能已适配断点续训练。 图2 开启故障重启 断
sh ./scripts/llama2/0_pl_sft_13b.sh 创建训练作业时,可开启自动重启功能。当环境问题导致训练作业异常时,系统将自动修复异常或隔离节点,并重启训练作业,提高训练成功率。为了避免丢失训练进度、浪费算力。此功能已适配断点续训练。 图2 开启故障重启 断
sh ./scripts/llama2/0_pl_lora_13b.sh 创建训练作业时,可开启自动重启功能。当环境问题导致训练作业异常时,系统将自动修复异常或隔离节点,并重启训练作业,提高训练成功率。为了避免丢失训练进度、浪费算力。此功能已适配断点续训练。 图2 开启故障重启 断
/scripts/llama2/0_pl_pretrain_13b.sh 创建训练作业时,可开启自动重启功能。当环境问题导致训练作业异常时,系统将自动修复异常或隔离节点,并重启训练作业,提高训练成功率。为了避免丢失训练进度、浪费算力。此功能已适配断点续训练。 图2 开启故障重启 断
针对不同的数据量和算法情况,推荐以下训练方案: 单机单卡:小数据量(1G训练数据)、低算力场景(1卡Vnt1),存储方案推荐使用“OBS的并行文件系统(存放数据和代码)”。 单机多卡:中等数据量(50G左右训练数据)、中等算力场景(8卡Vnt1),存储方案推荐使用“SFS(存放数据和代码)”。