检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
一般情况下,建议就近选择靠近您或者您的目标用户的区域,这样可以减少网络时延,提高访问速度。不过,在基础设施、BGP网络品质、资源的操作与配置等方面,中国大陆各个区域间区别不大,如果您或者您的目标用户在中国大陆,可以不用考虑不同区域造成的网络时延问题。 在除中国大陆以外的亚太地区有业务的用户,可
内网访问地址:同一私有网络内的弹性云服务器可以通过内网访问地址连接当前图实例。 公网访问地址:使用公网访问地址(弹性IP)可以从互联网访问图实例。同时支持图实例弹性IP的解绑与绑定。 JDBC连接字符串(内网):当JDBC驱动执行机器和图实例处于同一私有网络时,使用此配置。 JD
”、“-”、“=”、“@”等特殊字符,会被Excel解析为公式。为了保证系统安全,请打开文件时注意以下事项: 不要启用“启用动态数据交换服务器启动(不推荐)”配置。 打开CSV文件弹窗提醒安全问题时,不要选择“启用”或者“是”。 URI POST /ges/v1.0/{proje
”、“-”、“=”、“@”等特殊字符,会被Excel解析为公式。为了保证系统安全,请打开文件时注意以下事项: 不要启用“启用动态数据交换服务器启动(不推荐)”配置。 打开CSV文件弹窗提醒安全问题时,不要选择“启用”或者“是”。 URI POST /ges/v1.0/{proje
基本概念 点 图数据模型中的点代表实体。如交通网络中的车辆、通信网络中的站点、电商交易网络中的用户和商品、互联网中的网页等。 边 图数据模型中的边代表关系。如社交网络中的好友关系、电商交易网络中用户评分和购买行为、论文中作者之间的合作关系、文章之间的索引关系等。 Gremlin Gremlin是Apache
系统默认当前最新版本,目前只能选择当前默认的版本号。 选择网络信息,包含“虚拟私有云”、“子网”、“安全组”、“公网访问”和“企业项目”。 图2 网络信息 参数 说明 虚拟私有云 VPC即虚拟私有云,是通过逻辑方式进行网络隔离,提供安全、隔离的网络环境。 选择需要创建集群的VPC,单击“查看虚
Failed 未满足前提条件,服务器未满足请求者在请求中设置的其中一个前提条件。 413 Request Entity Too Large 由于请求的实体过大,服务器无法处理,因此拒绝请求。为防止客户端的连续请求,服务器可能会关闭连接。如果只是服务器暂时无法处理,则会包含一个Retry-After的响应信息。
hip),点和关系是最重要的实体。 图数据模型中的点代表实体,如交通网络中的车辆、通信网络中的站点、电商交易网络中的用户和商品、互联网中的网页等。 图数据模型中的边代表关系,如社交网络中的好友关系、电商交易网络中用户评分和购买行为、论文中作者之间的合作关系、文章之间的索引关系等。
基于策略的授权是一种更加灵活的授权方式,能够满足企业对权限最小化的安全管控要求。例如:针对GES服务,用户能够控制IAM用户仅能对某一类云服务器资源进行指定的管理操作。 GES支持的API授权项请参见《权限策略和授权项》。。 “GES ReadOnlyAccess”属于策略。 示例流程
请求什么类型的操作。 GET:请求服务器返回指定资源。 PUT:请求服务器更新指定资源。 POST:请求服务器新增资源或执行特殊操作。 DELETE:请求服务器删除指定资源,如删除对象等。 HEAD:请求服务器资源头部。 PATCH:请求服务器更新资源的部分内容。当资源不存在的时
为云统一入口的鉴权功能。 与虚拟私有云的关系 图引擎服务使用虚拟私有云(Virtual Private Cloud,简称VPC)为集群提供网络拓扑,实现多个不同集群互相隔离并控制访问。 与对象存储服务的关系 图引擎服务使用对象存储服务(Object Storage Service
查看图任务 总览图 任务中心 查看监控数据 连接管理
建成功后,单击刷新,再选择使用。 图1 绑定EIP 单击“确定”,完成绑定。 解绑EIP 当无需继续使用EIP时,您可通过解绑EIP来释放网络资源。 具体操作步骤如下: 登录图引擎服务管理控制台。 在左侧导航栏,选择“图管理”。 在图管理列表中,选择需解绑EIP的图,在“操作”列选择“更多”>“解绑EIP”。
请求什么类型的操作。 GET:请求服务器返回指定资源。 PUT:请求服务器更新指定资源。 POST:请求服务器新增资源或执行特殊操作。 DELETE:请求服务器删除指定资源,如删除对象等。 HEAD:请求服务器资源头部。 PATCH:请求服务器更新资源的部分内容。当资源不存在的时
图管理简介 查看创建失败的图 备份图和恢复图 升级图 回退图版本 导出图 重启图 变更图规格 扩副本 绑定&解绑EIP 清空数据 删除图 查看监控数据 查询schema 对接LTS 修改安全组 修改安全模式
中介中心度算法(Betweenness Centrality)以经过某个节点的最短路径数目来刻画节点重要性的指标。 适用场景 可用作社交、风控等网络中“中间人”发掘,交通、传输等网络中关键节点识别;适用于社交、金融风控、交通路网、城市规划等领域 参数说明 表1 Betweenness Centrality算法参数说明
聚类系数算法(Cluster Coefficient) 概述 聚类系数表示一个图中节点聚集程度的系数。在现实的网络中,尤其是在特定的网络中,由于相对高密度连接点的关系,节点总是趋向于建立一组严密的组织关系。聚类系数算法(Cluster Coefficient)用于计算图中节点的聚集程度。
Centrality)在已知一系列OD出行计划前提下,以经过某个点/某条边的最短路径数目来刻画边重要性的指标。 适用场景 可用作社交、风控等网络中“中间人”发掘,交通、传输等网络中关键节点识别,城市热点事件\早晚高峰人群车辆迁徙发生时关键路段的模拟;适用于社交、金融风控、交通路网、城市规划等领域 参数说明
Node2vec算法通过调用word2vec算法,把网络中的节点映射到欧式空间,用向量表示节点的特征。 Node2vec算法通过回退参数 P 和前进参数 Q 来生成从每个节点出发的随机步,带有BFS和DFS的混合,回退概率正比于1/P,前进概率正比于1/Q。每个节点出发生成多个随机步,反映出网络的结构信息。 适用场景