检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
根据您使用的时长计费,该方式适合前期试用、概念验证、短期使用; 预付费实例(实例按月/按年预付费) 预付费需要您一次性支付费用,可以获得相对于按需付费提供的更大折扣,节省34%至47%的费用,该方式适合计划长期使用的客户。
连接管理 图实例创建完成后,您可以通过连接管理功能下载相应的SDK和驱动,以及查看图实例的连接信息。 在图引擎管理控制台,左侧导航栏选择“连接管理”,进入连接管理页面。 图1 连接管理 下载SDK和驱动 图2 SDK和驱动 您可以选择集群支持的CPU架构,单击“下载”按钮进行SDK
基本概念 点 图数据模型中的点代表实体。如交通网络中的车辆、通信网络中的站点、电商交易网络中的用户和商品、互联网中的网页等。 边 图数据模型中的边代表关系。如社交网络中的好友关系、电商交易网络中用户评分和购买行为、论文中作者之间的合作关系、文章之间的索引关系等。 Gremlin Gremlin
如果点被删除了,基于该点的边会怎么处理? GES基于属性图(Property graph)模型导入图数据,一个属性图是由点、边、标签(Label)和属性(Property)组成的有向图。 点又称作节点(Node),边又称作关系(Relationship),点和关系是最重要的实体。
节点监控 在运维监控页面左侧导航栏单击“监控>节点监控”,进入节点监控页面,该页面展示了节点,内存,磁盘,磁盘I/O,网络I/O的实时消耗情况。 概览 在概览页面,您可以根据节点名浏览指定节点的关键资源情况,包括:节点名称、CPU使用率(%)、内存使用率(%)、平均磁盘使用率(%)
什么是区域与可用区? 什么是区域、可用区 我们用区域和可用区来描述数据中心的位置,您可以在特定的区域、可用区创建资源。 区域(Region):从地理位置和网络时延维度划分,同一个Region内共享弹性计算、块存储、对象存储、VPC网络、弹性公网IP、镜像等公共服务。Region分为通用
中介中心度算法(Betweenness Centrality) 概述 中介中心度算法(Betweenness Centrality)以经过某个节点的最短路径数目来刻画节点重要性的指标。 适用场景 可用作社交、风控等网络中“中间人”发掘,交通、传输等网络中关键节点识别;适用于社交、金融风控
应用场景 GES服务适用于互联网应用、知识图谱应用、社交网络、金融风控应用、城市工业应用、企业IT应用等场景。 互联网应用 在移动互联网时代,面对庞大的社交关系,媒体传播网络,GES可以帮助客户快速、有效的发现海量数据中隐含的信息。 该场景能帮助您实现以下功能。 推荐好友、商品或资讯
OD中介中心度(OD-betweenness Centrality) 概述 OD中介中心度算法(OD-betweenness Centrality)在已知一系列OD出行计划前提下,以经过某个点/某条边的最短路径数目来刻画边重要性的指标。 适用场景 可用作社交、风控等网络中“中间人”
聚类系数算法(Cluster Coefficient) 概述 聚类系数表示一个图中节点聚集程度的系数。在现实的网络中,尤其是在特定的网络中,由于相对高密度连接点的关系,节点总是趋向于建立一组严密的组织关系。聚类系数算法(Cluster Coefficient)用于计算图中节点的聚集程度
Node2vec算法 概述 Node2vec算法通过调用word2vec算法,把网络中的节点映射到欧式空间,用向量表示节点的特征。 Node2vec算法通过回退参数 P 和前进参数 Q 来生成从每个节点出发的随机步,带有BFS和DFS的混合,回退概率正比于1/P,前进概率正比于1/
带过滤的n_paths算法(filtered_n_paths) 概述 带过滤的n_paths算法是给定起始点source、目的点target、跳数k、路径数n、过滤条件filters,找出source和target间不多于n条的k跳无环路径。 适用场景 任意网络。 参数说明 表1
带过滤的n_paths算法(filtered_n_paths)(2.2.22) 概述 带过滤的n_paths算法是给定起始点source、目的点target、跳数k、路径数n、过滤条件filters,找出source和target间不多于n条的k跳无环路径。 算法名称:带过滤的n_paths
带过滤全最短路径(Filtered All Shortest Paths) 概述 带过滤全最短路径(Filtered All Shortest Paths)是在最短路径算法(Shortest Path)基础上支持条件过滤,寻找图中两节点之间满足条件的全最短路径。 适用场景 适用于关系挖掘
关联路径算法(n-Paths) 概述 关联路径算法(n-Paths)用于寻找图中两节点之间在层关系内的n条路径。 适用场景 关联路径算法(n-Paths)适用于关系分析、路径设计、网络规划等场景。 参数说明 表1 关联路径算法(n-Paths)参数说明 参数 是否必选 说明 类型
带一般过滤条件环路检测(filtered circle detection) 概述 带一般过滤条件环路检测(filtered circle detection)目的是寻找图中所有满足过滤条件的环路。 适用场景 带一般过滤条件的环路检测(filtered circle detection
全最短路算法(All Shortest Paths) 概述 全最短路径算法(All Shortest Paths)用以解决图论研究中的一个经典算法问题,旨在寻找图中两节点之间的所有最短路径。 适用场景 全最短路径算法(All Shortest Paths)适用于路径设计、网络规划等场景
解绑EIP(1.0.6) 功能介绍 当无需继续使用EIP时,您可通过解绑EIP来释放网络资源。 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。 URI POST /v2/{project_id
绑定&解绑EIP 绑定EIP 如果需要通过公网访问GES服务,您可以通过绑定弹性公网IP(简称EIP)来实现。 具体操作步骤如下: 登录图引擎服务管理控制台。 在左侧导航栏,选择“图管理”。 在图管理列表中,选择需绑定EIP图,在“操作”列选择“更多”>“绑定EIP”。 在弹出的“