检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
Decoding时,在发送的请求中包含上述guided_json架构,具体示例可参考以下代码。 curl -X POST http://${docker_ip}:8080/v1/completions \ -H "Content-Type: application/json" \ -d '{
2之间(包含2019.2和2023.2)版本的PyCharm专业版。SSH远程开发功能只限PyCharm专业版。单击PyCharm工具下载地址下载并完成安装。 Step1 下载并安装PyCharm ToolKit 在PyCharm中选择“File > Settings > Plu
19:基于gaussianblur的数据增强与原图预测结果不一致。 20:基于fliplr的数据增强与原图预测结果不一致。 21:基于crop的数据增强与原图预测结果不一致。 22:基于flipud的数据增强与原图预测结果不一致。 23:基于scale的数据增强与原图预测结果不一致。
Retransmission Analysis 单次通信重传将会耗时4秒以上,会导致较严重的通信性能劣化,这类问题通常是由于节点网络配置错误导致,可以联系服务方如华为云技术支持排查网络配置。 图23 通信重传分析 父主题: 基于advisor的昇腾训练性能自助调优指导
${model_path}:Step1 上传权重文件中上传的模型权重路径。 --tensor-parallel-size:并行卡数。 --host:服务部署的IP,使用本机IP 0.0.0.0。 --port:服务部署的端口8080。 --max-model-len:最大数据输入+输出长度,不能超过模型配置文件config
url_0" 。 train_url = args_opt.train_url # 初始定义的网络、损失函数及优化器,详细请参见MindSpore保存与加载。 # 1.初始定义的网络,以“ResNet50”为例。详细请参见ResNet50。 net = resnet50(args_opt
19:基于gaussianblur的数据增强与原图预测结果不一致。 20:基于fliplr的数据增强与原图预测结果不一致。 21:基于crop的数据增强与原图预测结果不一致。 22:基于flipud的数据增强与原图预测结果不一致。 23:基于scale的数据增强与原图预测结果不一致。
常见错误码 错误码 错误内容 说明 400 Bad Request 请求包含语法错误。 403 Forbidden 服务器拒绝执行。 404 Not Found 服务器找不到请求的网页。 500 Internal Server Error 服务内部错误。
example = SWRImage(swr_path = "**") # 容器镜像地址,用于模型注册节点的输入 表9 GalleryModel 属性 描述 是否必填 数据类型 subscription_id 订阅模型的订阅ID 是 str version_num 订阅模型的版本号
os os.system('pip install numpy==1.18.5') 如果依旧有报错情况,将以上代码修改为: import os os.system('pip install numpy==1.18.5') os.system('pip install keras==2
ModelArts VPC ECS EVS 单机单卡 按需购买(并行文件系统) × 免费 免费 包月购买 免费 × 按需购买 单机多卡 × 包月购买 (HPC型500G) 免费 免费 包月购买 免费 包月购买 (Ubuntu 18.04,建议不小于2U8G,本地存储空间100G,带EIP全动态BGP,按流量10M带宽)
dependencies 否 dependency结构数组 表示模型推理代码需要依赖的包,为结构体数据。 模型开发者需要提供包名、安装方式、版本约束。目前只支持pip安装方式。dependency结构数组说明如表6所示。 如果模型包内没有推理代码customize_service.py文件,则该字段可不填。自定义镜像模型不支持安装依赖包。
具体如表1所示。 表1 支持的模型列表和权重获取地址 序号 模型名称 是否支持fp16/bf16推理 是否支持W4A16量化 是否支持W8A8量化 是否支持W8A16量化 是否支持 kv-cache-int8量化 开源权重获取地址 1 llama-7b √ √ √ √ √ https://huggingface
'function': { 'name': '对应到实际执行的函数名称', 'description': '此处是函数相关描述', 'parameters': { '_comments':
方式二:使用AutoAWQ量化工具进行量化。 AutoAWQ量化工具的适配代码存放在代码包AscendCloud-LLM-x.x.x.zip的llm_tools/AutoAWQ目录下。 1、在容器中使用ma-user用户, vLLM使用transformers版本与awq冲突,
依赖包为开源安装包时 在“代码目录”中创建一个命名为“pip-requirements.txt”的文件,并且在文件中写明依赖包的包名及其版本号,格式为“包名==版本号”。 例如,“代码目录”对应的OBS路径下,包含模型文件,同时还存在“pip-requirements.txt”文件。“代码目录”的结构如下所示:
update_job_configs(description="update job description") 方式二:根据创建训练作业生成的训练作业对象更新。 job_instance.update_job_configs(description="update job description fourth")
方式二:使用AutoAWQ量化工具进行量化。 AutoAWQ量化工具的适配代码存放在代码包AscendCloud-LLM-x.x.x.zip的llm_tools/AutoAWQ目录下。 1、在容器中使用ma-user用户, vLLM使用transformers版本与awq冲突,
obs:object:DeleteObjectVersion obs:object:ListMultipartUploadParts obs:object:AbortMultipartUpload obs:object:GetObjectAcl obs:object:GetObjectVersionAcl
url_0" 。 train_url = args_opt.train_url # 初始定义的网络、损失函数及优化器,详细请参见MindSpore保存与加载。 # 1.初始定义的网络,以“ResNet50”为例。详细请参见ResNet50。 net = resnet50(args_opt