检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
JupyterLab中文件保存失败,如何解决? 问题现象 JupyterLab中保存文件时报错如下: 原因分析 浏览器安装了第三方插件proxy进行了拦截,导致无法进行保存。 在Notebook中的运行文件超过指定大小就会提示此报错。 jupyter页面打开时间太长。 网络环境原因,是否有连接网络代理。
JupyterLab中文件保存失败,如何解决? 问题现象 JupyterLab中保存文件时报错如下: 原因分析 浏览器安装了第三方插件proxy进行了拦截,导致无法进行保存。 在Notebook中的运行文件超过指定大小就会提示此报错。 jupyter页面打开时间太长。 网络环境原因,是否有连接网络代理。
作为调用发起方的客户端无法访问已经获取到的推理请求地址 问题现象 完成在线服务部署且服务处于“运行中”状态后,已经通过调用指南页面的信息获取到调用的server端地址,但是调用发起方的客户端访问该地址不通,出现无法连接、域名无法解析的现象。 原因分析 在调用指南页签中显示的调用地
共资源池和无需排队的专属资源池。 OBS 2.0支持 公共资源池 公共资源池提供公共的大规模计算集群,根据用户作业参数分配使用,资源按作业隔离。按资源规格、使用时长及实例数计费,不区分任务(训练作业、部署、开发)。公共资源池是ModelArts默认提供,不需另行创建或配置,您可以
安装远端插件时不稳定,需尝试多次 方法一:离线包安装方式(推荐) 到VS Code插件官网vscode_marketplace搜索待安装的Python插件,Python插件路径。 单击进入Python插件的Version History页签后,下载该插件的离线安装包,如图所示。 图1
欠拟合的解决方法有哪些? 模型复杂化。 对同一个算法复杂化。例如回归模型添加更多的高次项,增加决策树的深度,增加神经网络的隐藏层数和隐藏单元数等。 弃用原来的算法,使用一个更加复杂的算法或模型。例如用神经网络来替代线性回归,用随机森林来代替决策树。 增加更多的特征,使输入数据具有更强的表达能力。
是否支持sudo提权? 出于安全考虑,Notebook不支持sudo提权操作。 父主题: 规格限制
Notebook如何离线安装VS Code Server 背景介绍 VS Code执行remote-ssh远程连接时,会根据用户的VS Code版本去自动更新vscode-server和Vscode-client的版本,通过本地和远端尝试下载相关的安装脚本和包。当远端网络和本地网
专属资源池关联SFS Turbo显示异常 问题现象1 专属资源池关联SFS Turbo时显示异常,关联失败。 图1 关联异常 图2 报错提示 问题现象2 网络操作解除关联SFS Turbo后状态仍显示已关联且无报错信息,而解除关联按钮置灰不可操作。同时该网络的解除关联SFS Turbo按钮置灰不可操作。
选择该VPC下的一个子网。 IPv6网络 若当前网络配置的子网、规格、镜像都支持IPv6,则会显示该参数,打开后可启用IPv6功能。 请确保您的子网已开启IPv6功能,若未开启请参考为虚拟私有云创建新的子网。 不同规格、镜像对IPv6支持的情况不同,若不支持则不会显示IPv6网络参数,请以控制台实际显示为准。
再pytorch,再其他依赖包。 如果训练数据和代码经常变动,则不建议把数据、代码放到容器镜像里,避免频繁地构建容器镜像。 容器已经能满足隔离需求,不建议在容器内再创建多个conda env。 导出conda环境。 启动线下的容器镜像: # run on terminal docker
器的外网IP地址,最多配置5个,用英文逗号隔开),不设置则表示无接入IP地址限制。 如果用户使用的访问机器和ModelArts服务的网络有隔离,则访问机器的外网地址需要在主流搜索引擎中搜索“IP地址查询”获取,而不是使用ipconfig或ifconfig/ip命令在本地查询。 图5
离线训练安装包准备说明 申请的模型软件包一般依赖联通网络的环境。若用户的机器或资源池无法联通网络,并无法git clone下载代码、安装python依赖包的情况下,用户则需要找到已联网的机器(本章节以Linux系统机器为例)提前下载资源,以实现离线安装。用户可遵循以下步骤操作。 步骤一:资源下载
使用SFS盘出现报错rpc_check_timeout:939 callbacks suppressed 问题现象 弹性文件服务(Scalable File Service,SFS)提供按需扩展的高性能文件存储(NAS),可以在裸金属服务器中通过网络协议挂载使用,SFS支持NFS
步骤总览 单机单卡 资源购买: 购买对象存储服务OBS 购买容器镜像服务SWR 创建网络 购买ModelArts专属资源池 基本配置: 权限配置 obsutils安装和配置 (可选)工作空间配置 训练: 线下容器镜像构建及调试 上传镜像 上传数据和算法至OBS(首次使用时需要) 使用Notebook进行代码调试
什么是区域、可用区? 什么是区域、可用区? 区域和可用区用于描述数据中心的位置,您可以在特定的区域、可用区创建资源。 区域(Region):从地理位置和网络时延维度划分,同一个Region内共享弹性计算、块存储、对象存储、VPC网络、弹性公网IP、镜像等公共服务。Region分为
参考线下容器镜像构建及调试章节,构建容器镜像并调试,镜像构建及调试与单机单卡相同。 上传镜像,参考单机单卡训练的上传镜像章节操作。 操作步骤 登录Imagenet数据集下载官网地址,下载Imagenet21k数据集:http://image-net.org/ 下载格式转换后的annotation文件:ILSVRC2
Notebook中使用Conda安装Keras 2.3.1报错 问题现象 使用Conda安装Keras 2.3.1版本报错。 原因分析 可能是Conda网络不通,请使用pip install命令安装。 解决方法 执行 !pip install keras==2.3.1命令安装Keras。
创建单机多卡的分布式训练(DataParallel) 本章节介绍基于PyTorch引擎的单机多卡数据并行训练。 MindSpore引擎的分布式训练参见MindSpore官网。 训练流程简述 单机多卡数据并行训练流程介绍如下: 将模型复制到多个GPU上 将一个Batch的数据均分到每一个GPU上 各GPU上的模型进行前向传播,得到输出
为什么在ModelArts数据标注平台标注数据提示标注保存失败? 问题现象 以Chrome浏览器为例,同一张图片,第一次标注时,右上角弹窗提示标注保存失败,第二次提交相同的标注结果,又提示标注成功,此问题概率性发生。“F12”打开浏览器Console,单击network查看请求列