检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
这些指令数据可以用来对语言模型进行指令调优,使语言模型更好地遵循指令。
这些指令数据可以用来对语言模型进行指令调优,使语言模型更好地遵循指令。
这些指令数据可以用来对语言模型进行指令调优,使语言模型更好地遵循指令。
推理模型量化 使用AWQ量化工具转换权重 使用SmoothQuant量化工具转换权重 使用kv-cache-int8量化 使用GPTQ量化 父主题: 主流开源大模型基于Standard适配PyTorch NPU推理指导(6.3.908)
推理模型量化 使用AWQ量化工具转换权重 使用SmoothQuant量化工具转换权重 使用kv-cache-int8量化 使用GPTQ量化 父主题: 主流开源大模型基于Standard适配PyTorch NPU推理指导(6.3.909)
预训练 前提条件 已上传训练代码、训练权重文件和数据集到OBS中,具体参考代码上传至OBS。 Step1 创建训练任务 创建训练作业,并自定义名称、描述等信息。选择自定义算法,启动方式自定义,以及选择上传的镜像。 代码目录选择:OBS桶路径下的 llm_train/AscendSpeed
准备工作 准备资源 准备权重 准备代码 准备镜像 准备Notebook 父主题: 主流开源大模型基于Standard适配PyTorch NPU推理指导(6.3.906)
这些指令数据可以用来对语言模型进行指令调优,使语言模型更好地遵循指令。
主流开源大模型基于LIte Server适配PyTorch NPU推理指导(6.3.905) 推理场景介绍 部署推理服务 推理性能测试 推理精度测试 附录:大模型推理常见问题 父主题: LLM大语言模型训练推理
主流开源大模型基于Lite Server适配PyTorch NPU训练指导(6.3.905) 场景介绍 准备工作 预训练任务 SFT全参微调训练任务 LoRA微调训练 查看日志和性能 训练脚本说明 父主题: LLM大语言模型训练推理
主流开源大模型基于Lite Server适配PyTorch NPU训练指导(6.3.906) 场景介绍 准备工作 预训练任务 SFT全参微调训练任务 LoRA微调训练 查看日志和性能 训练脚本说明 父主题: LLM大语言模型训练推理
主流开源大模型基于Standard+OBS适配ModelLink PyTorch NPU训练指导(6.3.908) 场景介绍 准备工作 预训练 SFT全参微调训练 LoRA微调训练 查看日志和性能 训练脚本说明 常见错误原因和解决方法 父主题: LLM大语言模型训练推理
主流开源大模型基于Lite Server适配PyTorch NPU推理指导(6.3.908) 推理场景介绍 部署推理服务 推理性能测试 推理精度测试 推理模型量化 附录:基于vLLM不同模型推理支持最小卡数和最大序列说明 附录:大模型推理常见问题 父主题: LLM大语言模型训练推理
主流开源大模型基于Lite Server适配PyTorch NPU推理指导(6.3.910) 推理场景介绍 部署推理服务 推理性能测试 推理精度测试 推理模型量化 eagle投机小模型训练 附录:基于vLLM不同模型推理支持最小卡数和最大序列说明 附录:大模型推理常见问题 父主题: LLM大语言模型训练推理
NPU推理指导(6.3.911) 推理场景介绍 准备工作 部署推理服务 推理性能测试 推理精度测试 推理模型量化 Eagle投机小模型训练 附录:基于vLLM不同模型推理支持最小卡数和最大序列说明 附录:大模型推理常见问题 附录:工作负载Pod异常问题和解决方法 父主题: LLM大语言模型训练推理
场景介绍 方案概览 本文档利用训练框架PyTorch_npu+华为自研Ascend Snt9B硬件,为用户提供了常见主流开源大模型在ModelArts Standard上的预训练和全量微调方案。 本方案目前仅适用于部分企业客户,完成本方案的部署,需要先联系您所在企业的华为方技术支持
这些指令数据可以用来对语言模型进行指令调优,使语言模型更好地遵循指令。
推理精度测试 本章节介绍如何使用lm-eval工具开展语言模型的推理精度测试,数据集包含mmlu、ARC_Challenge、GSM_8k、Hellaswag、Winogrande、TruthfulQA等。 约束限制 确保容器可以访问公网。
Megatron-LM/ # 适配昇腾的Megatron-LM训练框架 |──MindSpeed/ # MindSpeed昇腾大模型加速库 |──ModelLink/ # ModelLink端到端的大语言模型方案
准备资源 创建专属资源池 本文档中的模型运行环境是ModelArts Standard。资源规格需要使用专属资源池中的昇腾Snt9B资源,请参考创建资源池购买资源。 推荐使用“西南-贵阳一”Region上的昇腾资源。 专属资源池驱动检查 登录ModelArts控制台,单击“专属资源池