检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
码和权重文件到工作环境和上传数据到指定目录章节完成。训练脚本中会自动执行训练前的权重转换操作和数据处理操作。 如果想详细了解脚本执行训练权重转换操作和数据集预处理操作说明请分别参见训练中的权重转换说明和训练的数据集预处理说明。 Step2 修改训练超参配置 以Llama2-70b
码和权重文件到工作环境和上传数据到指定目录章节完成。训练脚本中会自动执行训练前的权重转换操作和数据处理操作。 如果想详细了解脚本执行训练权重转换操作和数据集预处理操作说明请分别参见训练中的权重转换说明和训练的数据集预处理说明。 步骤二 修改训练超参配置 以Llama2-70b和L
码和权重文件到工作环境和上传数据到指定目录章节完成。训练脚本中会自动执行训练前的权重转换操作和数据处理操作。 如果想详细了解脚本执行训练权重转换操作和数据集预处理操作说明请分别参见训练中的权重转换说明和训练的数据集预处理说明。 Step2 修改训练超参配置 以Llama2-70b
码和权重文件到工作环境和上传数据到指定目录章节完成。训练脚本中会自动执行训练前的权重转换操作和数据处理操作。 如果想详细了解脚本执行训练权重转换操作和数据集预处理操作说明请分别参见训练中的权重转换说明和训练的数据集预处理说明。 步骤二 修改训练超参配置 以Llama2-70b和L
码和权重文件到工作环境和上传数据到指定目录章节完成。训练脚本中会自动执行训练前的权重转换操作和数据处理操作。 如果想详细了解脚本执行训练权重转换操作和数据集预处理操作说明请分别参见训练中的权重转换说明和训练的数据集预处理说明。 Step2 修改训练超参配置 以Llama2-70b
码和权重文件到工作环境和上传数据到指定目录章节完成。训练脚本中会自动执行训练前的权重转换操作和数据处理操作。 如果想详细了解脚本执行训练权重转换操作和数据集预处理操作说明请分别参见训练中的权重转换说明和训练的数据集预处理说明。 步骤二 修改训练超参配置 以Llama2-70b和L
码和权重文件到工作环境和上传数据到指定目录章节完成。训练脚本中会自动执行训练前的权重转换操作和数据处理操作。 如果想详细了解脚本执行训练权重转换操作和数据集预处理操作说明请分别参见训练中的权重转换说明和训练的数据集预处理说明。 步骤2 修改训练超参配置 以Llama2-70b和L
码和权重文件到工作环境和上传数据到指定目录章节完成。训练脚本中会自动执行训练前的权重转换操作和数据处理操作。 如果想详细了解脚本执行训练权重转换操作和数据集预处理操作说明请分别参见训练中的权重转换说明和训练的数据集预处理说明。 步骤二 修改训练超参配置 以Llama2-70b和L
码和权重文件到工作环境和上传数据到指定目录章节完成。训练脚本中会自动执行训练前的权重转换操作和数据处理操作。 如果想详细了解脚本执行训练权重转换操作和数据集预处理操作说明请分别参见训练中的权重转换说明和训练的数据集预处理说明。 Step2 修改训练超参配置 以Llama2-70b
码和权重文件到工作环境和上传数据到指定目录章节完成。训练脚本中会自动执行训练前的权重转换操作和数据处理操作。 如果想详细了解脚本执行训练权重转换操作和数据集预处理操作说明请分别参见训练中的权重转换说明和训练的数据集预处理说明。 步骤2 修改训练超参配置 以Llama2-70b和L
码和权重文件到工作环境和上传数据到指定目录章节完成。训练脚本中会自动执行训练前的权重转换操作和数据处理操作。 如果想详细了解脚本执行训练权重转换操作和数据集预处理操作说明请分别参见训练中的权重转换说明和训练的数据集预处理说明。 Step2 修改训练超参配置 以Llama2-70b
码和权重文件到工作环境和上传数据到指定目录章节完成。训练脚本中会自动执行训练前的权重转换操作和数据处理操作。 如果想详细了解脚本执行训练权重转换操作和数据集预处理操作说明请分别参见训练中的权重转换说明和训练的数据集预处理说明。 Step2 修改训练超参配置 以Llama2-70b
码和权重文件到工作环境和上传数据到指定目录章节完成。训练脚本中会自动执行训练前的权重转换操作和数据处理操作。 如果想详细了解脚本执行训练权重转换操作和数据集预处理操作说明请分别参见训练中的权重转换说明和训练的数据集预处理说明。 步骤二 修改训练超参配置 以Llama2-70b和L
pipeline应用准备 当前迁移路径是从ONNX模型转换到MindIR模型,再用MindSpore Lite做推理, 所以迁移前需要用户先准备好自己的ONNX pipeline。下文以官方开源的图生图的Stable Diffusion v1.5的onnx pipeline代码为例进行说明。
MindSpore Lite问题定位指南 在MindSpore Lite使用中遇到问题时,例如模型转换失败、训练后量化转换失败、模型推理失败、模型推理精度不理想、模型推理性能不理想、使用Visual Studio报错、使用Xcode构建APP报错等,您可以先查看日志信息进行定位分析。
PU上进行模型转换时无需考虑动态shape问题,因为CPU算子支持动态shape;而在Ascend场景上,算子需要指定具体的shape信息,并且在模型转换的编译阶段完成对应shape的编译任务,从而能够在推理时支持多种shape的输入。 动态batch 在模型转换阶段通过--co
精度问题处理 设置高精度并重新转换模型 在转换模型时,默认采用的精度模式是fp16,如果转换得到的模型和标杆数据的精度差异比较大,可以使用fp32精度模式提升模型的精度(精度模式并不总是需要使用fp32,因为相对于fp16,fp32的性能较差。因此,通常只在检测到某个模型精度存在
日志提示“Out of bounds nanosecond timestamp” 问题现象 在使用pandas.to_datetime转换时间时,出现如下报错: pandas._libs.tslibs.np_datetime.OutOfBoundsDatetime: Out of
如何将Keras的.h5格式模型导入到ModelArts中 ModelArts不支持直接导入“.h5”格式的模型。您可以先将Keras的“.h5”格式转换为TensorFlow的格式,然后再导入ModelArts中。 从Keras转TensorFlow操作指导请参见其官网指导。 父主题: 导入模型
bool 原因分析 出现该问题的可能原因如下: 训练数据中出现了非int、float、bool类型数据。 处理方法 可参考如下代码,将错误列进行转换: from sklearn import preprocessing lbl = preprocessing.LabelEncoder()