检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
running_task_type 否 Integer 指定需要检测的正在运行任务(包括初始化)的类型。可选值如下: 0:自动标注 1:预标注 2:导出任务 3:切换版本 4:导出manifest 5:导入manifest 6:发布版本 7:自动分组 search_content 否 String 模糊匹配名称,默认为空。
所有资源,均在该空间下。当您创建新的工作空间之后,相当于您拥有了一个新的“ModelArts分身”,您可以通过菜单栏的左上角进行工作空间的切换,不同工作空间中的工作互不影响。 创建工作空间时,必须绑定一个企业项目。多个工作空间可以绑定到同一个企业项目,但一个工作空间不可以绑定多个
py #构造vllm评测配置脚本名字 ├──vllm_ppl.py #ppl精度测试脚本 精度评测切换conda环境,确保之前启动服务为vllm接口,进入到benchmark_eval目录下,执行如下命令。 conda activate python-3
所有资源,均在该空间下。当您创建新的工作空间之后,相当于您拥有了一个新的“ModelArts分身”,您可以通过菜单栏的左上角进行工作空间的切换,不同工作空间中的工作互不影响。 创建工作空间时,必须绑定一个企业项目。多个工作空间可以绑定到同一个企业项目,但一个工作空间不可以绑定多个
创建开发环境实例 功能介绍 创建开发环境实例,用于代码开发。 该接口为异步操作,创建开发环境实例的状态请通过查询开发环境实例详情接口获取。 URI POST /v1/{project_id}/demanager/instances 参数说明如表1所示。 表1 参数说明 参数 是否必选
py #构造vllm评测配置脚本名字 ├──vllm_ppl.py #ppl精度测试脚本 精度评测切换conda环境,确保之前启动服务为vllm接口,进入到benchmark_eval目录下,执行如下命令。 conda activate python-3
目前暂不支持按需计费。 区域 不同区域的云服务产品之间内网互不相通;请就近选择靠近您业务的区域,可减少网络时延,提高访问速度。资源购买完成后,您可在控制台左上角切换区域,查看对应的资源。 可用区 可用区是同一服务区内,电力和网络互相独立的地理区域,一般是一个独立的物理机房,这样可以保证可用区的独立性。
登录ModelArts管理控制台,在左侧导航栏中选择“AI专属资源池 > 弹性集群Cluster”,默认进入“Standard资源池”页面。 切换到“网络”页签,单击“创建”,弹出“创建网络”页面。 在“创建网络”弹窗中填写网络信息。 网络名称:创建网络时默认生成网络名称,也可自行修改。
ma-cli dli-job提交DLI Spark作业支持的命令 $ma-cli dli-job -h Usage: ma-cli dli-job [OPTIONS] COMMAND [ARGS]... DLI spark job submission and query job
部署服务 功能介绍 将模型部署为服务。 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。 URI POST /v1/{project_id}/services 表1 路径参数 参数
创建训练作业 功能介绍 创建训练作业。 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。 URI POST /v2/{project_id}/training-jobs 表1 路径参数
创建生产训练作业 模型训练是一个不断迭代和优化模型权重的过程。ModelArts的训练模块支持创建训练作业、查看训练情况以及管理训练版本。通过模型训练试验模型结构、数据和超参的各种组合,便于找到最佳的模型结构和权重。 创建生产环境的训练作业有2种方式: 通过ModelArts S
Notebook:是一款Web应用,用户能够在界面编写代码,并且将代码、数学方程和可视化内容组合到一个文档中。 JupyterLab插件:插件包括规格切换,分享案例到AI Gallery进行交流,停止实例(实例停止后CPU、Memory不再计费)等,提升用户体验。 支持SSH远程连接功能:通
据。在资源占用情况窗口打开时,会定期向后台获取最新的资源使用率数据并刷新。 操作一:如果训练作业使用多个计算节点,可以通过实例名称的下拉框切换节点。 操作二:单击图例“cpuUsage”、“gpuMemUsage”、“gpuUtil”、“memUsage”“npuMemUsage