检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
difficult:必选字段,标注目标是否难以识别(0表示容易识别)。 confidence:可选字段,标注目标的置信度,取值范围0-1之间。 bndbox:必选字段,标注框的类型。
针对已标注数据,通用图像分类工作流仅支持一张图片识别单个标签,支持如下两种数据格式。 相同标签的图片放在一个目录里,并且目录名字即为标签名。当存在多层目录时,则以最后一层目录为标签名。 示例如下所示,其中“snow”和“rainy”分别为标签名。
已发布北京四区域 文字识别套件 OBS 2.0支持通用单模板工作流 文字识别套件提供单模板开发的工作流,通过工作流指引构建文字识别模板,识别单个板式图片中的文字,实现自定义结构化信息识别。
零售商品识别工作流 热轧钢板表面缺陷检测工作流 云状识别工作流 刹车盘识别工作流 无监督车牌检测工作流 父主题: 视觉套件
视觉套件 行业套件介绍 新建应用 零售商品识别工作流 热轧钢板表面缺陷检测工作流 云状识别工作流 刹车盘识别工作流 无监督车牌检测工作流 第二相面积含量测定工作流 通用图像分类工作流 更新应用版本 查看应用详情 监控应用 管理设备 删除应用
评估模型 部署服务 模型准备完成后,您可以部署服务,用于识别图像的类别,也可以直接调用对应的API和SDK识别。 部署服务 父主题: 通用图像分类工作流
应用开发套件 文字识别套件 自然语言处理套件 视觉套件 HiLens套件
检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很高,有的类别数据量较低,会影响模型整体的识别效果。 选择适当的学习率和训练轮次。 通过详细评估中的错误识别示例,有针对性地扩充训练数据。
检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很高,有的类别数据量较低,会影响模型整体的识别效果。 选择适当的学习率和训练轮次。 通过详细评估中的错误识别示例,有针对性地扩充训练数据。
检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很高,有的类别数据量较低,会影响模型整体的识别效果。 选择适当的学习率和训练轮次。 通过详细评估中的错误识别示例,有针对性地扩充训练数据。
检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很高,有的类别数据量较低,会影响模型整体的识别效果。 选择适当的学习率和训练轮次。 通过详细评估中的错误识别示例,有针对性地扩充训练数据。
检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很高,有的类别数据量较低,会影响模型整体的识别效果。 选择适当的学习率和训练轮次。 通过详细评估中的错误识别示例,有针对性地扩充训练数据。
检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很高,有的类别数据量较低,会影响模型整体的识别效果。 选择适当的学习率和训练轮次。 通过详细评估中的错误识别示例,有针对性地扩充训练数据。
表1 API调用指导 行业套件 调用API方法 错误码 文字识别套件 OCR_API参考 OCR错误码 自然语言处理套件 NLP_API参考 NLP错误码 视觉套件 Image_API参考 Image错误码
检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很高,有的类别数据量较低,会影响模型整体的识别效果。 选择适当的学习率和训练轮次。 通过详细评估中的错误识别示例,有针对性地扩充训练数据。
检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很高,有的类别数据量较低,会影响模型整体的识别效果。 如果分割效果不好,建议检测图片标注,标注质量的好坏直接影响模型训练图像分割效果的好坏。 根据数据量选择适当的学习率和训练轮次。
评估模型 部署服务 模型准备完成后,您可以部署服务,用于为给定的金相图像测定第二相面积含量,也可以直接调用对应的API和SDK识别。 部署服务 父主题: 第二相面积含量测定工作流
通过详细评估中的错误识别示例,有针对性地扩充训练数据。 后续操作 模型训练完成后,单击“下一步”,进入应用开发的“模型评估”步骤,详细操作指引请参见评估模型。 父主题: 第二相面积含量测定工作流