检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
获取在线服务API接口地址和文件预测输入参数信息 方式一:使用图形界面的软件进行预测(以Postman为例) 下载Postman软件并安装,您也可以直接在Chrome浏览器添加Postman扩展程序(也可使用其他支持发送post请求的软件)。Postman推荐使用7.24.0版本。 打开Postman,如图2所示。
多标签的标签文件示例,如2.txt文件内容如下所示: Cat Dog 只支持JPG、JPEG、PNG、BMP格式的图片。单张图片大小不能超过5MB,且单次上传的图片总大小不能超过8MB。 物体检测 支持两种格式: ModelArts PASCAL VOC 1.0 物体检测的简易模
名称 版本 PyTorch pytorch_2.1.0 驱动 23.0.6 获取软件和镜像 表2 获取软件和镜像 分类 名称 获取路径 插件代码包 AscendCloud-6.3.909-xxx.zip软件包中的AscendCloud-AIGC-6.3.909-xxx.zip 说明:
909版本,请参考表1获取配套版本的软件包和镜像,请严格遵照版本配套关系使用本文档。 确保容器可以访问公网。 资源规格要求 推荐使用“西南-贵阳一”Region上的DevServer资源和Ascend Snt9B。 软件配套版本 表1 获取软件 分类 名称 获取路径 插件代码包 AscendCloud-6
名称 版本 PyTorch pytorch_2.1.0 驱动 23.0.5 获取软件和镜像 表2 获取软件和镜像 分类 名称 获取路径 插件代码包 AscendCloud-6.3.906-xxx.zip软件包中的AscendCloud-AIGC-6.3.906-xxx.zip 说明:
create_time Long 版本创建时间。 crop Boolean 是否对图片进行裁剪,只对标注框形状为bndbox的物体检测数据集有效。可选值如下: true:对图片进行裁剪 false:不对图片进行裁剪(默认值) crop_path String 裁剪后的文件存放路径。
上传预测图片 单击“上传”,选择一张需要预测的图片,单击“预测”,即可在右边的预测结果显示区查看您的预测结果。 图5 预测样例图 图6 查看预测结果 本案例中数据和算法生成的模型仅适用于教学模式,并不能应对复杂的预测场景。即生成的模型对预测图片有一定范围和要求,预测图片必须和训练数据集中的图片相似才可能预测准确。
上传预测图片 单击“上传”,选择一张需要预测的图片,单击“预测”,即可在右边的预测结果显示区查看您的预测结果。 图5 预测样例图 图6 查看预测结果 本案例中数据和算法生成的模型仅适用于教学模式,并不能应对复杂的预测场景。即生成的模型对预测图片有一定范围和要求,预测图片必须和训练数据集中的图片相似才可能预测准确。
907版本,请参考表1获取配套版本的软件包和镜像,请严格遵照版本配套关系使用本文档。 确保容器可以访问公网。 资源规格要求 推荐使用“西南-贵阳一”Region上的DevServer资源和Ascend Snt9B。 软件配套版本 表1 获取软件 分类 名称 获取路径 插件代码包 AscendCloud-6
sh,并预测模型。基础镜像中默认提供了run.sh作为启动脚本。启动命令如下: sh run.sh 图6 运行启动脚本 上传一张预测图片(手写数字图片)到Notebook中。 图7 手写数字图片 图8 上传预测图片 重新打开一个新的Terminal终端,执行如下命令进行预测。 curl -kv -F 'image
具有领先的光学字符识别(OCR)和多模态理解能力。该模型在综合性 OCR 能力评测基准 OCRBench 上达到开源社区的最佳水平,甚至在场景文字理解方面实现接近 Gemini Pro 的性能。 MiniCPM-V 2.0 值得关注的特性包括: 领先的 OCR 和多模态理解能力。MiniCPM-V
on上的DevServer资源和Ascend Snt9B单机单卡。 获取软件 获取插件代码包ascendcloud-aigc-6.3.902-*.tar.gz文件。获取路径:Support网站。 如果没有软件下载权限,请联系您所在企业的华为方技术支持下载获取。 ascendcloud-aigc-6
详细请参见: 标注图片(图像分类) 标注图片(物体检测) 标注文本(文本分类) 标注文本(命名实体) 标注文本(文本三元组) 标注音频(语音分割) 在标注页面中,每个成员可查看“未标注”、“待确认”、“已驳回”、“待审核”、“审核通过”、“验收通过”的图片信息。请及时关注管理员驳回以及待修正的图片。
能包含!<>=&"'特殊字符。 export_images 否 Boolean 发布时是否导出图片到版本输出目录。可选值如下: true:导出图片到版本输出目录 false:不导出图片到版本输出目录(默认值) remove_sample_usage 否 Boolean 发布时是否
入服务预测界面,在“预测”页签单击“上传”,选择本地图片进行测试。 单击“预测”进行测试,预测完成后,右侧“预测结果”区域输出标签名称“sunflowers”和检测的评分。如模型准确率不满足预期,可在“数据标注”页签中添加图片并进行标注,重新进行模型训练及模型部署。预测结果中的参
our prompt},其中id表示对话中的第几张图片。"img_path"可以是本地的图片或网络地址。如果是本地图片,容器需要有权限读取图片。网络图片服务端会自动下载。 messages的样例如下: # body参考 # 图片存放本地示例 { "messages": [
909-xxx.zip软件包中。 模型每次推理的图片数量必须是支持的batchsize,比如当前转换的mindir模型batchsize仅支持1,那么模型推理输入的图片数只能是1张;如果当前转换的mindir模型的batchsize支持多个,比如1,2,4,8,那么模型推理输入的图片数可以是1,2,4,8。
描述 add_sample_count Integer 处理后新增的图片数量。 create_time Long 数据处理任务的创建时间。 deleted_sample_count Integer 处理后删除的图片数量。 description String 数据处理任务的版本描述。
create_time Long 版本创建时间。 crop Boolean 是否对图片进行裁剪,只对标注框形状为bndbox的物体检测数据集有效。可选值如下: true:对图片进行裁剪 false:不对图片进行裁剪(默认值) crop_path String 裁剪后的文件存放路径。
为文件类,可包含图片、音频或视频等场景,可以在“预测”页签添加图片进行服务预测。 如果您的输入类型为图片,请注意测试服务单张图片输入应小于8MB。 JSON文本预测,请求体的大小不超过8MB。 因APIG(API网关)的限制,单次预测的时间不能超过40S。 图片支持以下类型:“p