检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
此处下拉框有4个选项,分别是: Code(写python代码),Markdown(写Markdown代码,通常用于注释),Raw(一个转换工具),-(不修改)。 查看代码历史版本。 git插件,图标显示灰色表示当前Region不支持。 当前的资源规格。 单击可以选择Kernel。
得到的模型、本地开发的模型部署为AI应用,并进行统一管理。 同时,为方便能够将模型部署在不同的设备上,ModelArts还提供了模型转换能力,转换后的模型可应用于Ascend类型。 发布区域:华北-北京一、华北-北京四、华北-乌兰察布一、华东-上海一、华南-广州、西南-贵阳一、中
介绍如何在Notebook中配置NPU环境,部署并启动推理服务,完成精度测试和性能测试。 如果需要部署量化模型,需在Notebook中进行模型权重转换后再部署推理服务。 在推理生产环境中部署推理服务 介绍如何在创建AI应用,部署并启动推理服务,在线预测在线服务。 父主题: 主流开源大模型基于Standard适配PyTorch
#构造vllm评测配置脚本名字 ├──vllm_ppl.py #ppl精度测试脚本 精度评测切换conda环境,确保之前启动服务为vllm接口,进入到benchmark_eval目录下,执行如下命令。 conda activate python-3
py #构造vllm评测配置脚本名字 ├──vllm_ppl.py #ppl精度测试脚本 精度评测切换conda环境,确保之前启动服务为vllm接口,进入到benchmark_eval目录下,执行如下命令。 conda activate python-3
#构造vllm评测配置脚本名字 ├──vllm_ppl.py #ppl精度测试脚本 精度评测切换conda环境,确保之前启动服务为vllm接口,进入到benchmark_eval目录下,执行如下命令。 conda activate python-3
├──awq # W4A16量化工具 ├──convert_awq_to_npu.py # awq权重转换脚本 ├──llm_evaluation # 推理评测代码包 ├──benchmark_tools #性能评测
{pod_name} bash ${pod_name}:pod名,例如图1${pod_name}为yourapp-87d9b5b46-c46bk。 精度评测切换conda环境,确保之前启动服务为vllm接口,进入到benchmark_eval目录下,执行如下命令。 conda activate python-3
#构造vllm评测配置脚本名字 ├──vllm_ppl.py #ppl精度测试脚本 精度评测切换conda环境,确保之前启动服务为vllm接口,进入到benchmark_eval目录下,执行如下命令。 conda activate python-3
标注“推荐”的Runtime来源于统一镜像,后续统一镜像将作为主流的推理基础镜像。统一镜像中的安装包更齐全,详细信息可以参见推理基础镜像列表。 推荐将旧版镜像切换为统一镜像,旧版镜像后续将会逐渐下线。 待下线的基本镜像不再维护。 统一镜像Runtime的命名规范:<AI引擎名字及版本> - <硬件及版本:cpu或cuda或cann>
标注“推荐”的Runtime来源于统一镜像,后续统一镜像将作为主流的推理基础镜像。统一镜像中的安装包更齐全,详细信息可以参见推理基础镜像列表。 推荐将旧版镜像切换为统一镜像,旧版镜像后续将会逐渐下线。 待下线的基本镜像不再维护。 统一镜像Runtime的命名规范:<AI引擎名字及版本> - <硬件及版本:cpu或cuda或cann>
clone https://github.com/AUTOMATIC1111/stable-diffusion-webui.git # 切换到1.9.0版本 RUN cd /home/ma-user/sdwebui/stable-diffusion-webui && git checkout
running_task_type 否 Integer 指定需要检测的正在运行任务(包括初始化)的类型。可选值如下: 0:自动标注 1:预标注 2:导出任务 3:切换版本 4:导出manifest 5:导入manifest 6:发布版本 7:自动分组 请求参数 无 响应参数 状态码: 200 表3 响应Body参数
介绍如何在Notebook中配置NPU环境,部署并启动推理服务,完成精度测试和性能测试。 如果需要部署量化模型,需在Notebook中进行模型权重转换后再部署推理服务。 在推理生产环境中部署推理服务 介绍如何在创建AI应用,部署并启动推理服务,在线预测在线服务。 父主题: 主流开源大模型基于Standard适配PyTorch
/home/ma-user -m -u 1000 -g 100 -s /bin/bash ma-user 通过增加nginx代理,支持https协议。 协议转换为https之后,对外暴露的端口从tfserving的8501变为8080。 Dockerfile中执行如下命令完成nginx的安装和配置。
单。 查看专属资源池的账单 登录ModelArts管理控制台,在“专属资源池 > 弹性集群”中,单击资源名称进入资源详情。 在资源详情页,切换到“规格”页签,在规格列表中复制“计量ID”。 图5 复制计量ID 进入“费用中心 > 流水和明细账单”页面。 选择“明细账单”,在账单列
设置相关权限,并且该权限仅对此项目生效;如果“授权范围”选择“所有资源”,则该权限在所有区域项目中都生效。访问ModelArts时,需要先切换至授权区域。 如表1所示,包括了ModelArts的所有系统策略权限。如果系统预置的ModelArts权限,不满足您的授权要求,可以创建自
音驱动的人脸说话视频生成模型。主要应用于数字人场景。不仅可以基于静态图像来输出与目标语音匹配的唇形同步视频,还可以直接将动态的视频进行唇形转换,输出与输入语音匹配的视频,俗称“对口型”。该技术的主要作用就是在将音频与图片、音频与视频进行合成时,口型能够自然。 案例主要介绍如何基于ModelArts
|── finetune # 微调加载的数据 |──converted_weights # HuggingFace格式转换megatron格式后权重文件 |── saved_dir_for_output # 训练输出保存权重,目录结构会自动生成,无需用户创建
|── finetune # 微调加载的数据 |──converted_weights # HuggingFace格式转换megatron格式后权重文件 |── saved_dir_for_output # 训练输出保存权重,目录结构会自动生成,无需用户创建