检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
训练脚本中会自动执行训练前的权重转换操作和数据处理操作。 如果想详细了解脚本执行训练权重转换操作和数据集预处理操作说明请分别参见训练中的权重转换说明和训练的数据集预处理说明。 Step2 修改训练超参配置 以Llama2-70b和Llama2-13b的SFT微调为例,执行脚本为0_pl_sft_70b
_13b.sh 选择用户自己的专属资源池,以及规格与节点数。防止训练过程中出现内存溢出的情况,用户可参考表2进行配置。 图2 选择资源池规格 新增SFS Turbo挂载配置,并选择用户创建的SFS Turbo文件系统。 云上挂载路径:输入镜像容器中的工作路径 /home/ma-user/work/
Lite Server上的预训练和全量微调方案。训练框架使用的是ModelLink。 本方案目前仅适用于部分企业客户,完成本方案的部署,需要先联系您所在企业的华为方技术支持。 约束限制 本文档适配昇腾云ModelArts 6.3.909版本,请参考表1获取配套版本的软件包,请严格遵照版本配套关系使用本文档。
断点续训:加载权重+优化器,可自由指定训练输出目录下批次的权重 故障快恢:加载权重+优化器,默认加载训练输出目录下最新的权重 支持的模型列表 本方案支持以下模型的训练,如表1所示。 表1 支持的模型列表 序号 支持模型 支持模型参数量 权重文件获取地址 1 llama2 llama2-7b https://huggingface
ss使用humaneval数据集时,需要执行模型生成的代码。请仔细阅读human_eval/execution.py文件第48-57行的注释,内容参考如下。了解执行模型生成代码可能存在的风险,如果接受这些风险,请取消第58行的注释,执行下面步骤5进行评测。 # WARNING #
述清楚人物四肢的角度、背景中物体的位置、光线照射的角度,使用Controlnet可以通过图像特征来为扩散模型的生成过程提供更加精细控制的方式。 将Controlnet适配到昇腾卡进行训练,可以提高能效、支持更大模型和多样化部署环境,提升昇腾云在图像生成和编辑场景下的竞争力。 本章节介绍SDXL&SD
训练作业日志保存的OBS地址。 host_path String 训练作业日志保存的宿主机的路径。 表54 调用训练接口失败响应参数 参数 类型 描述 error_msg String 调用失败时的错误信息,调用成功时无此字段。 error_code String 调用失败时的错误码,具体请参见错误码,调用成功时无此字段。
参数session即是1初始化的数据。返回的是一个字典,其中flavors值是一个列表,描述了训练服务支持的所有规格的信息。每个元素中flavor_id是可直接用于远程训练任务的计算规格,max_num是该规格的最大节点数。如果用户知道要使用的计算规格,可以略过这一步。 提交远程训练作业。
6。 适配的CANN版本是cann_8.0.rc3。 资源规格要求 本文档中的模型运行环境是ModelArts Lite的Lite k8s Cluster。推荐使用“西南-贵阳一”Region上的资源和Ascend Snt9B。 支持的模型列表和权重文件 本方案支持vLLM的v0.6
语音匹配的唇形同步视频,还可以直接将动态的视频进行唇形转换,输出与输入语音匹配的视频,俗称“对口型”。该技术的主要作用就是在将音频与图片、音频与视频进行合成时,口型能够自然。 Wav2Lip模型的输入为任意的一段视频和一段语音,输出为一段唇音同步的视频。 Wav2Lip的网络模型
镜像中配置的端口错误 模型可以正常启动,但是因为镜像中启用的端口非8080,或者镜像启用的端口与创建模型时配置的端口不一致,导致部署服务时register-agent无法与模型通信,超过一定时间后(最长20分钟)认为模型启动失败。 需要检查两个地方:自定义镜像中的代码开放的端口和创
ascendfactory-cli方式启动(推荐) 相对于之前demo.sh方式启动(历史版本)的启动方式,本章节新增了通过benchmark工具启动训练的方式。此方式训练完成后json日志或打屏日志直接打印性能结果,免于计算,方便用户验证发布模型的质量。并且新的训练方式将统一管理训练日志、训练结果和训练配置,使用ya
多模态模型推理性能测试 多模态模型推理的性能测试目前仅支持静态性能测试。 静态性能测试是指评估在固定输入、固定输出和固定并发下,模型的吞吐与首token延迟。该方式实现简单,能比较清楚的看出模型的性能和输入输出长度、以及并发的关系。 性能benchmark验证使用到的脚本存放在代码包AscendCloud-LLM-xxx
_13b.sh 选择用户自己的专属资源池,以及规格与节点数。防止训练过程中出现内存溢出的情况,用户可参考表2进行配置。 图2 选择资源池规格 新增SFS Turbo挂载配置,并选择用户创建的SFS Turbo文件系统。 云上挂载路径:输入镜像容器中的工作路径 /home/ma-user/work/
可视化作业名称。限制为1-20位只含数字,字母,下划线,中划线的名称。 job_desc 否 String 对可视化作业的描述,默认为空,字符串的长度限制为[0, 256]。 train_url 是 String OBS路径地址。 job_type 否 String 可视化的类型,可选的有tensorboard和m
_13b.sh 选择用户自己的专属资源池,以及规格与节点数。防止训练过程中出现内存溢出的情况,用户可参考表2进行配置。 图2 选择资源池规格 新增SFS Turbo挂载配置,并选择用户创建的SFS Turbo文件系统。 云上挂载路径:输入镜像容器中的工作路径 /home/ma-user/work/
908版本新增如下内容: 文档中新增对Llama3.1的适配。 ModelLink框架和MindSpeed已升级到最新版本。 支持的模型列表 本方案支持以下模型的训练,如表1所示。 表1 支持的模型列表 序号 支持模型 支持模型参数量 权重文件获取地址 1 llama2 llama2-7b https://huggingface
Fine-tuning):是一种利用有标签数据进行模型训练的方法。 它基于一个预先训练好的模型,通过调整模型的参数,使其能够更好地拟合特定任务的数据分布。 与从头开始训练模型相比,监督式微调能够充分利用预训练模型的知识和特征表示,从而加速训练过程并提高模型的性能。 训练阶段下有不同的训练策略,分为全参数训练、部
Standard运行的,需要购买并开通ModelArts专属资源池和OBS桶。 准备数据 准备训练数据,可以用本案使用的数据集,也可以使用自己准备的数据集。 准备权重 准备所需的权重文件。 准备代码 准备AscendSpeed训练代码。 准备镜像 准备训练模型适用的容器镜像。 准备Notebook
String 用户GaussDB(DWS)集群的IP地址。 port String 用户GaussDB(DWS)集群的端口。 queue_name String 表格数据集,DLI队列名。 subnet_id String MRS集群的子网ID。 table_name String