检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
outputs 数据集标注节点的输出列表 是 LabelingOutput或者LabelingOutput的列表 properties 数据集标注相关的配置信息 是 LabelTaskProperties title title信息,主要用于前端的名称展示 否 str description 数据集标注节点的描述信息
明和训练的数据集预处理说明。 步骤二 修改训练超参配置 以Llama2-70b和Llama2-13b的SFT微调为例,执行脚本为0_pl_sft_70b.sh 和 0_pl_sft_13b.sh 。 修改模型训练脚本中的超参配置,必须修改的参数如表1所示。其他超参均有默认值,可以参考表1按照实际需求修改。
明和训练的数据集预处理说明。 步骤二 修改训练超参配置 以Llama2-70b和Llama2-13b的SFT微调为例,执行脚本为0_pl_sft_70b.sh 和 0_pl_sft_13b.sh 。 修改模型训练脚本中的超参配置,必须修改的参数如表1所示。其他超参均有默认值,可以参考表1按照实际需求修改。
明和训练的数据集预处理说明。 步骤二 修改训练超参配置 以Llama2-70b和Llama2-13b的SFT微调为例,执行脚本为0_pl_sft_70b.sh 和 0_pl_sft_13b.sh 。 修改模型训练脚本中的超参配置,必须修改的参数如表1所示。其他超参均有默认值,可以参考表1按照实际需求修改。
明和训练的数据集预处理说明。 步骤二 修改训练超参配置 以Llama2-70b和Llama2-13b的LoRA微调为例,执行脚本为0_pl_lora_70b.sh和0_pl_lora_13b.sh 。 修改模型训练脚本中的超参配置,必须修改的参数如表1所示。其他超参均有默认值,可以参考表1按照实际需求修改。
Schema信息表示表格的列名和对应类型,需要跟导入数据的列数保持一致。 如果您的原始表格中已包含表头,需要开启“导入是否包含表头”开关,系统会导入文件的第一行(表头)作为列名,无需再手动修改Schema信息。 如果您的原始表格中没有表头,需关闭“导入是否包含表头”开关,从OBS
__name__ == "__main__": state_npu_path = os.path.join("trainer_state_npu.json") state_gpu_path = os.path.join("trainer_state_gpu.json")
其他函数相关说明 } ] // chat.completions 其他参数 ) 应用示例 示例一:在Dify中配置支持Function Calling的模型使用 示例二:通过Function Calling扩展大语言模型对外部环境的理解 父主题: 通过Function
明和训练的数据集预处理说明。 步骤二 修改训练超参配置 以Llama2-70b和Llama2-13b的SFT微调为例,执行脚本为0_pl_sft_70b.sh 和 0_pl_sft_13b.sh 。 修改模型训练脚本中的超参配置,必须修改的参数如表1所示。其他超参均有默认值,可以参考表1按照实际需求修改。
明和训练的数据集预处理说明。 步骤二 修改训练超参配置 以Llama2-70b和Llama2-13b的LoRA微调为例,执行脚本为0_pl_lora_70b.sh和0_pl_lora_13b.sh 。 修改模型训练脚本中的超参配置,必须修改的参数如表1所示。其他超参均有默认值,可以参考表1按照实际需求修改。
训练的数据集预处理说明。 Step2 修改训练超参配置 以Llama2-70b和Llama2-13b的SFT微调为例,执行脚本为0_pl_sft_70b.sh 和 0_pl_sft_13b.sh 。 修改模型训练脚本中的超参配置,必须修改的参数如表1所示。其他超参均有默认值,可以参考表1按照实际需求修改。
--tensor-model-parallel-size:${TP}张量并行数,需要与训练脚本中的TP值配置一样。 --pipeline-model-parallel-size:${PP}流水线并行数,需要与训练脚本中的PP值配置一样。 --load-dir:加载转换模型权重路径。 --save-dir :
--tensor-model-parallel-size:${TP}张量并行数,需要与训练脚本中的TP值配置一样。 --pipeline-model-parallel-size:${PP}流水线并行数,需要与训练脚本中的PP值配置一样。 --load-dir:加载转换模型权重路径。 --save-dir :
--tensor-model-parallel-size:${TP}张量并行数,需要与训练脚本中的TP值配置一样。 --pipeline-model-parallel-size:${PP}流水线并行数,需要与训练脚本中的PP值配置一样。 --load-dir:加载转换模型权重路径。 --save-dir :
--tensor-model-parallel-size:${TP}张量并行数,需要与训练脚本中的TP值配置一样。 --pipeline-model-parallel-size:${PP}流水线并行数,需要与训练脚本中的PP值配置一样。 --load-dir:加载转换模型权重路径。 --save-dir :
algorithm_names Array of strings 该算法类型下所有算法的名称。 请求示例 查询自动化搜索作业支持的yaml配置模板的信息 GET https://endpoint/v2/{project_id}/training-jobs/autosearch/yaml-templates
解决方法:降低transformers版本到4.42:pip install transformers==4.42 --upgrade 问题6:部署在线服务报错starting container process caused "exec: \"/home/mind/model/run_vllm
csv。 --num-scheduler-steps: 需和服务启动时配置的num-scheduler-steps一致。默认为1。 --served-model-name: 选择性添加,在接口中使用的模型名;如果没有配置,则默认为tokenizer。 --enable-prefix-c
在“数据处理”页面,单击“创建”进入“创建数据处理”页面。 在创建数据处理页面,填写相关算法参数。 填写基本信息。基本信息包括“名称”、“版本”和“描述”。其中“版本”信息由系统自动生成,按“V0001”、“V0002”规则命名,用户无法修改。 您可以根据实际情况填写“名称”和“描述”信息。 图1 创建数据处理基本信息
--tensor-model-parallel-size:${TP}张量并行数,需要与训练脚本中的TP值配置一样。 --pipeline-model-parallel-size:${PP}流水线并行数,需要与训练脚本中的PP值配置一样。 --load-dir:加载转换模型权重路径。 --save-dir :