检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
1.4 优化深度学习的方法目前,深度学习在多种目标分类和识别任务中取得优于传统算法的结果,并产生大量优秀的模型,使用迁移学习方法将优秀的模型应用在其他任务中,可以达到在减少深度学习训练时间的前提下,提升分类任务性能,同时降低对训练集规模的依赖,关于迁移学习及其实例分析将在第6章进
学习深度学习是否要先学习完机器学习,对于学习顺序不太了解
进行资源管理容器VS虚拟机与虚机相比容器的优点1. • 更快速的交付和部署2. • 高效的部署和扩容3. • 更高的资源利用率4. • 更简单的管理Docker的组件Docker常见架构
近几年媒体的大肆针对深度学习的宣传及报道,而深度学习是被证明为最先进的性能最好的技术之一,那它会不会逐步取代传统的机器学习了?
自动微分是深度学习框架的灵魂。一般而言,自动微分是指一种自动求某个函数的导数的方法。在机器学习中,这些导数可以更新权重。在更广泛的自然科学中,这些导数也能用于各种后续计算。自动微分的发展历程如图在自动微分的发展历程中,有以下3种自动微分技术。基于静态计算图的转换:将网络在编译时转
像上一节介绍的一样,要训练深度学习模型也需要准备训练数据,数据也是分为两部分,一部分是验证码图像,另一部分是数据标注,即缺口的位置。但和上一节不一样的是,这次标注不再是单纯的验证码文本了,因为这次我们需要表示的是缺口的位置,缺口对应的是一个矩形框,要表示一个矩形框
10的原因。补充一点,作者使用LUBM作为演绎推理的基准,该演绎推理包含了具有类及其层次结构的本体。实际上,这也是我关注的焦点之一,因为标准基准数据集FB15K(-237)和WN18(RR)仅包含实例和关系,而没有任何类归因。显然,大型知识图谱具有数千种类型,处理该信息可以潜在地改善链接预测和推理性能。我还是很
搭建起来的一样,稍有不同的是,在神经网络中层的类型更多样,而且层与层之间的联系复杂多变。深度学习中的深度主要就是来描述神经网络中层的数量,目前神经网络可以达到成百上千层,整个网络的参数量从万到亿不等,所以深度学习并不是非常深奥的概念,其本质上就是神经网络。神经网络并不是最近几年才
(1).在活动报名成功的同学中,抽取5名同学获得鼠标垫一张。 (2).在课程进度打开贴中,在进度>80%的同学中抽取5名同学获得鼠标垫一张。 (3).在课程测试贴中,在测试成绩>80分的同学中抽取5名同学获得鼠标垫
代价函数的信息通过网络向后流动,以便计算梯度。计算梯度的解析表达式是很直观的,但是数值化地求解这样的表达式在计算上的代价可能很大。反向传播算法使用简单和廉价的程序来实现这个目标。反向传播这个术语经常被误解为用于多层神经网络的整个学习算法。实际上,反向传播仅指用于计算梯度的方法,而
塞读的操作,这样在读的时候就不会互斥,提高读的效率。 主要的原则是读的时候可以被多个线程同时读,写的时候只能有一个线程去写。 在JUC中ReadWriteLock读写锁,是怎么实现上面这种描述的呢? 1.2 读写锁的使用 使用JUC中的ReadWriteLock读写锁的时候,基本
Gated Recurrent Unit – GRU 是 LSTM 的一个变体。他保留了 LSTM 划重点,遗忘不重要信息的特点,在long-term 传播的时候也不会被丢失。
换成文本的技术。从早期的基于模板的方法到严格的统计模型,再到如今的深度模型,语音识别技术已经经历了几代的更迭。 图像识别图像识别是深度学习最成功的应用之一。深度学习在计算机视觉领域的突破发生在2012年,Hinton教授的研究小组利用卷积神经网络架构(AlexNet)大幅降低了ImageNet
深度学习是目前人工智能最受关注的领域,但黑盒学习法使得深度学习面临一个重要的问题:AI能给出正确的选择,但是人类却并不知道它根据什么给出这个答案。本期将分享深度学习的起源、应用和待解决的问题;可解释AI的研究方向和进展。
在深度学习的背景下,半监督学习通常指的是学习一个表示 h = f(x)。学习表示的目的是使相同类中的样本有类似的表示。无监督学习可以为如何在表示空间聚集样本提供有用线索。在输入空间紧密聚集的样本应该被映射到类似的表示。在许多情况下,新空间上的线性分类器可以达到较好的泛化 (Belkin
须从头开始训练的模型表现得更好。同样地,一个已经学会预测句子里的下一个单词的模型,也应该对人类语言模式有一定的了解。我们可能期望这个模型可以作为翻译或情感分析等相关任务的好的初始化模型。 预训练和微调在计算机视觉和自然语言处理中都已有了成功的应用。虽然预训练和微调在计算机视
添加操作offer(需要添加的元素,超时时间,超时时间的单位)方法; 在设置好队列长度后,如果未超过队列长度,会返回true;如果超出队列长度继续添加,不会抛异常,会返回false,并且丢弃添加的元素,并且在所设置的超时时间后自动结束操作; 2.1.4.2 移除操作poll(超时时间,超时时间的单位)方法;
1 知识表示学习的定义知识表示学习是将知识库中的知识表示为低维稠密的实体向量,即Embedding。知识图谱是由实体和关系组成,通常采用三元组的形式表示,【head(头实体),relation(实体的关系),tail(尾实体)】,简写为(h,r,t)。知识表示学习任务就是学习h,
21323434545
之前的帖子了解了知识图谱的一些概念,下面继续看下知识图谱相关的算法应用。这篇论文《RNNLogic: Learning Logic Rules for Reasoning on Knowledge Graphs》讨论了知识图谱上学习问题的相关解决方案,其阐述如下:本文研究了知识图谱