内容选择
全部
内容选择
内容分类
  • 学堂
  • 博客
  • 论坛
  • 开发服务
  • 开发工具
  • 直播
  • 视频
  • 用户
时间
  • 一周
  • 一个月
  • 三个月
  • 机器学习深度学习

    Learning,DL)属于机器学习子类。它灵感来源于人类大脑工作方式,是利用深度神经网络来解决特征表达一种学习过程。深度神经网络本身并非是一个全新概念,可理解为包含多个隐含层神经网络结构。为了提高深层神经网络训练效果,人们对神经元连接方法以及激活函数等方面做出了

    作者: QGS
    678
    2
  • 深度学习Normalization模型

    很快被作为深度学习标准工具应用在了各种场合。BN**虽然好,但是也存在一些局限问题,诸如当BatchSize太小时效果不佳、对RNN等**络无法有效应用BN等。针对BN问题,最近两年又陆续有基于BN思想很多改进Normalization模型被提出。BN是深度学习进展中里程

    作者: 可爱又积极
    841
    3
  • 知识表示学习知识表征)

    1 知识表示学习定义知识表示学习是将知识库中知识表示为低维稠密实体向量,即Embedding。知识图谱是由实体关系组成,通常采用三元组形式表示,【head(头实体),relation(实体关系),tail(尾实体)】,简写为(h,r,t)。知识表示学习任务就是学习h,

    作者: Cheri Chen
    发表时间: 2020-08-13 19:38:12
    13280
    0
  • 深度学习现实应用

    种语言即时翻译,速度之快宛如魔法。谷歌翻译背后,就是机器学习。此时,你可能会想,谷歌翻译已经经历了很长时间,那么现在有些什么新意呢?实际上,在过去两年时间里,谷歌已经完全将深度学习嵌入进了谷歌翻译中。事实上,这些对语言翻译知之甚少深度学习研究人员正提出相对简单机器学习

    作者: 运气男孩
    832
    4
  • 深度学习特点

    深度学习区别于传统浅层学习深度学习不同在于: (1)强调了模型结构深度,通常有5层、6层,甚至10多层隐层节点;(2)明确了特征学习重要性。也就是说,通过逐层特征变换,将样本在原空间特征表示变换到一个新特征空间,从而使分类或预测更容易。与人工规则构造特征方法相比,

    作者: QGS
    667
    2
  • 深度学习: 反向传播其他微分算法

    y),其中 x 是一组变量,我们需要它们导数,而 y 是函数另外一组输入变量,但我们并不需要它们导数。在学习算法中,我们最常需要梯度是代价函数关于参数梯度,即 ∇θJ(θ)。许多机器学习任务需要计算其他导数,来作为学习过程一部分,或者用来分析学得模型。反向传播算法也适用于这些

    作者: 运气男孩
    2365
    2
  • 学习人工智能AI需要哪些最基础知识?

    机器学习是人工智能的另一重要课题。机器学习是指在一定知识表示意义下获取新知识过程,按照学习机制不同,主要有归纳学习、分析学习、连接机制学习遗传学习等。       知识处理系统主要由知识推理机组成。知识库存储系统所需要知识,当知识量较大而又有多种表示方法时,知识合理组织与管理是重要。推理机在

    作者: ypr189
    1043
    2
  • 深度学习模型介绍

    深度神经网络:深度学习模型有很多,目前开发者最常用深度学习模型与架构包括卷积神经网络 (CNN)、深度置信网络 (DBN)、受限玻尔兹曼机 (RBM)、递归神经网络 (RNN & LSTM & GRU)、递归张量神经网络 (RNTN)、自动编码器 (AutoEncoder)、生成对抗网络

    作者: 极客潇
    1762
    2
  • 队列相关知识学习

    添加操作offer(需要添加元素,超时时间,超时时间单位)方法; 在设置好队列长度后,如果未超过队列长度,会返回true;如果超出队列长度继续添加,不会抛异常,会返回false,并且丢弃添加元素,并且在所设置超时时间后自动结束操作; 2.1.4.2 移除操作poll(超时时间,超时时间单位)方法;

    作者: 多米诺的古牌
    发表时间: 2021-08-26 15:30:59
    1157
    0
  • 读写锁相关知识学习

    塞读操作,这样在读时候就不会互斥,提高读效率。 主要原则是读时候可以被多个线程同时读,写时候只能有一个线程去写。 在JUC中ReadWriteLock读写锁,是怎么实现上面这种描述呢? 1.2 读写锁使用 使用JUC中ReadWriteLock读写锁时候,基本

    作者: 多米诺的古牌
    发表时间: 2021-08-26 14:49:03
    1095
    0
  • 深度学习概览

    HCIA-AI V3.0系列课程。本课程主要讲述深度学习相关基本知识,其中包括深度学习发展历程、深度学习神经 网络部件、深度学习神经网络不同类型以及深度学习工程中常见问题。

  • 浅谈深度学习

    动从数据中学习模式,并根据这些模式进行预测分类。由于其高效性准确性,深度学习技术正在成为越来越多领域主流技术。然而,深度学习技术也存在一些挑战和问题。例如,深度学习模型训练需要大量数据计算资源,而且通常需要大量时间人力来完成。此外,深度学习模型精度稳定性也需要

    作者: 运气男孩
    24
    3
  • 深度学习之机器学习挑战

            机器学习主要挑战是我们算法必须能够在先前未观测新输入上表现良好,而不只是在训练集上效果好。在先前未观测到输入上表现良好能力被称为泛化(generalization)。通常情况下,当我们训练机器学习模型时,我们可以访问训练集,在训练集上计算一些度量误差,被称为训练误差(training

    作者: 小强鼓掌
    821
    3
  • 深度学习之机器学习挑战

            机器学习主要挑战是我们算法必须能够在先前未观测新输入上表现良好,而不只是在训练集上效果好。在先前未观测到输入上表现良好能力被称为泛化(generalization)。通常情况下,当我们训练机器学习模型时,我们可以访问训练集,在训练集上计算一些度量误差,被称为训练误差(training

    作者: 小强鼓掌
    517
    2
  • 深度学习概念

    Intelligence)。深度学习学习样本数据内在规律表示层次,这些学习过程中获得信息对诸如文字、图像和声音等数据解释有很大帮助。它最终目标是让机器能够像人一样具有分析学习能力,能够识别文字、图像和声音等数据。 深度学习是一个复杂机器学习算法,在语言和图像识别方面取得效果,远远超过先前

    作者: QGS
    973
    3
  • 浅谈深度学习

    首先要明白什么是深度学习深度学习是用于建立、模拟人脑进行分析学习神经网络,并模仿人脑机制来解释数据一种机器学习技术。它基本特点是试图模仿大脑神经元之间传递,处理信息模式。最显著应用是计算机视觉自然语言处理(NLP)领域。显然,“深度学习”是与机器学习“神经网络”

    作者: 运气男孩
    1269
    3
  • 什么是深度学习

    深度学习是使用多层结构从原始数据中自动学习并提取高层次特征一类机器学习算法。通常,从原始数据中提取高层次、抽象特征是非常困难深度学习将原始数据表示成一个嵌套特征层级,这样一来,每层特征均可以由更简单特征来定义计算。尤为重要是,深度学习可以自动地学习如何最优地将不

    作者: 角动量
    1546
    5
  • 深度学习前景

    为众所周知深度学习’’。这个领域已经更换了很多名称,它反映了不同研究人员不同观点影响。全面地讲述深度学习历史超出了本书范围。然而,一些基本背景对理解深度学习是有用。一般来说,目前为止深度学习已经经历了三次发展浪潮:20世纪40年代到60年代深度学习雏形出现在控

    作者: G-washington
    1665
    1
  • 深度学习之流形学习

    中大部分区域都是无效输入,感兴趣输入只分布在包含少量点子集构成一组流形中,而学习函数中感兴趣输出变动只位于流形中方向,或者感兴趣变动只发生在我们从一个流形移动到另一个流形时候。流形学习是在连续数值数据无监督学习设定下被引入,尽管这个概率集中想法也能够泛化到离

    作者: 小强鼓掌
    1676
    3
  • 学习笔记 - 知识图谱之学习逻辑规则推理

    之前帖子了解了知识图谱一些概念,下面继续看下知识图谱相关算法应用。这篇论文《RNNLogic: Learning Logic Rules for Reasoning on Knowledge Graphs》讨论了知识图谱上学习问题相关解决方案,其阐述如下:本文研究了知识图谱

    作者: RabbitCloud
    1673
    5
提示

您即将访问非华为云网站,请注意账号财产安全