检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
降等。组合模型,损失函数和优化算法来构建学习算法的配方同时适用于监督学习和无监督学习。线性回归实例说明了如何适用于监督学习的。无监督学习时,我们需要定义一个只包含 X 的数据集,一个合适的无监督损失函数和一个模型。例如,通过指定如下损失函数可以得到PCA的第一个主向量:J(w) =
降等。组合模型,损失函数和优化算法来构建学习算法的配方同时适用于监督学习和无监督学习。线性回归实例说明了如何适用于监督学习的。无监督学习时,我们需要定义一个只包含 X 的数据集,一个合适的无监督损失函数和一个模型。例如,通过指定如下损失函数可以得到PCA的第一个主向量模型定义为重建函数
估计量的方差或标准误差告诉我们,当独立地从潜在的数据生成过程中重采样数据集时,如何期望估计的变化。正如我们希望估计的偏差较小,我们也希望其方差较小。 当我们使用有限的样本计算任何统计量时,真实参数的估计都是不确定的,在这个意义下,从相同的分布得到其他样本时
2.5,学习率是0.01,那下一个尝试的点是距离前一个点2.5*0.01=0.0025的位置。(梯度是固定的,还是每走一步都会变的呢?)个人认为好的学习率,不应该是一个固定值,而应该是先大后小。也就是先大步快速的到达底部附近,再小步寻找最底部。学习率是学习开始之前就设置的,叫超参
theory)可知,对于任意的非线性函数一定可以找到一个深度学习网络来对其进行表示,但是“可表示”并不代表“可学习”,因此需要进一步了解深度学习的样本复杂度,即需要多少训练样本才能得到一个足够好的深度学习模型。这些问题都有待于从理论层面进行突破,统计学对深度学习的进一步发展有着十分重要的意义。
种架构的所有方法之间的异同。其分析的角度包括训练的数据集、网络结构的设计、它们在重建性能、训练策略和泛化能力上的效果。对于一些关键的方法,作者还使用了公开数据集和私有数据进行总结和比较,采用私有数据的目的是测试各类方法在全新场景下的泛化性能。这篇论文能够为研究深度立体匹配的研究人
y=wx+b里的w和b,也叫权重和偏差?在监督式学习中,机器学习算法通过以下方式构建模型:检查多个样本并尝试找出可最大限度的减少损失的模型。这一过程称为经验风险最小化损失函数有L1,L2。L1是绝对值,L2是均方误差MSE,那么2个场景做损失比较时会有L1一样,L2不一样的情况本来是
(AutoEncoder)、生成对抗网络 (GAN)等。深度学习方法处理计算机视觉问题的过程类似于人类的学习过程:我们搭建的深度学习模型通过对现有图片的不断学**结出各类图片的特征,最后输出一个理想的模型,该模型能够准确预测新图片所属的类别。深度学习中的“深度”体现在将数据转换为所需要数据的层数之深。给定模型进行
在深度学习时代,谷歌、Facebook、百度等科技巨头开源了多款框架来帮助开发者更轻松地学习、构建和训练不同类型的神经网络。而这些大公司也花费了很大的精力来维护 TensorFlow、PyTorch 这样庞大的深度学习框架。除了这类主流框架之外,开发者们也会开源一些小而精的框架或者库。比如今年
机器学习中的一个核心问题是设计不仅在训练数据上表现好,并且能在新输入上泛化好的算法。在机器学习中,许多策略显式地被设计为减少测试误差(可能会以增大训练误差为代价)。这些策略被统称为正则化。我们将在后文看到,深度学习工作者可以使用许多不同形式的正则化策略。事实上,开发更有效的正则化
还有一个是vggnet,他的问题是参数太大。深度学习的问题:1面向任务单一,依赖于大规模有标签数据,几乎是个黑箱模型。现在人工智能基本由深度学习代表了,但人工智能还有更多。。。然后就开始讲深度学习的开发框架。先整了了Theano,开始于2007年的加拿大的蒙特利尔大学。随着tens
传统的机器学习需要人工提取数据特征,而深度学习通过层次化的表示来完成特征的提取。层次化的表示是指用简单的表示逐步表达较复杂的表示。1. 如何理解简单和复杂的表示? 2. 这种所谓层次化的表示的理论依据是什么?
虽然modelarts能够帮助我们在线上完成深度学习的模型,但是训练好的深度学习模型是怎么部署的
学习目标 目标 知道深度学习与机器学习的区别了解神经网络的结构组成知道深度学习效果特点 应用 无 1.1.1 区别 1.1.1.1 特征提取方面 机器学习的特征工程步骤是要靠手动完成的,而且需要大量领域专业知识深度学习通常由多个层
也造就了深度学习的蓬勃发展,“深度学习”才一下子火热起来。击败李世石的Alpha go即是深度学习的一个很好的示例。Google的TensorFlow是开源深度学习系统一个比较好的实现,支持CNN、RNN和LSTM算法,是目前在图像识别、自然语言处理方面最流行的深度神经网络模型
神经网络的结构从普通的全连接神经网络,发展到卷积神经网络、循环神经网络、自编码器、生成式对抗网络和图神经网络等各种结构, 但BP算法一直是神经网络的一个经典和高效的寻优工具。附神经网络早期一些发展历程1943年,WarrenMcCulloch和WalterPitts于《神经元与行
而在指定转换的方向抵抗扰动。虽然这种解析方法是聪明优雅的,但是它有两个主要的缺点。首先,模型的正则化只能抵抗无穷小的扰动。显式的数据集增强能抵抗较大的扰动。其次,我们很难在基于整流线性单元的模型上使用无限小的方法。这些模型只能通过关闭单元或缩小它们的权重才能缩小它们的导数。它们不
Learning是机器学习中一个非常接近AI的领域,其动机在于建立、模拟人脑进行分析学习的神经网络,最近研究了机器学习中一些深度学习的相关知识,本文给出一些很有用的资料和心得。 Key Words:有监督学习与无监督学习,分类、回归,密度估计、聚类,深度学习,Sparse DBN,
对信息的处理是分级的。从低级的提取边缘特征到形状(或者目标等),再到更高层的目标、目标的行为等,即底层特征组合成了高层特征,由低到高的特征表示越来越抽象。深度学习借鉴的这个过程就是建模的过程。 深度神经网络可以分为3类,前馈深度网络(feed-forwarddeep networks
n阶张量/n维数组流,表示张量数据流动/计算的过程。每一个张量有一个唯一的类型,运算的类型不匹配会报错,比如int和float32运算就不行,这个是比较严格的,可以先通过tf.cast()做类型转换常量定义的时候是可以按需求做类型自动转换、reshape的但是变量的定义中,类型还是根据初值来定的,而设定的需求类型并没有生效:v2=tf