内容选择
全部
内容选择
内容分类
  • 学堂
  • 博客
  • 论坛
  • 开发服务
  • 开发工具
  • 直播
  • 视频
  • 用户
时间
  • 一周
  • 一个月
  • 三个月
  • 【mindSpore】【深度学习】求指路站内的深度学习教程

    老师给了我们个任务,用mindSpore完成一个深度学习,求大佬指路,站内有什么方便的教程。要求不能是花卉识别、手写体数字识别、猫狗识别,因为这些按教程已经做过了(然而我还是不会mindSpore)。尽量简单,我们只要是个深度学习就能完成任务。

    作者: abcd咸鱼
    1443
    1
  • 深度学习学习算法

    机器学习算法是一种可以从数据中学习的算法。然而,我们所谓的 ‘‘学习’’ 是什么意思呢?Mitchell (1997) 提供了一个简洁的定义:‘‘对于某类任务 T 和性能度量P,一个计算机程序被认为可以从经验 E 中学习是指,通过经验 E 改进后,它在任务 T 上由性能度量 P 衡量的性能有所提升。”

    作者: 小强鼓掌
    736
    1
  • 什么是深度学习深度学习与Mindspore实践》今天你读书了吗?

    为模型的深度。另一方面,在深度概率模型中,也把描述概念之间如何相互关联的图的深度而非计算图的深度记为一种模型的深度。值得注意的是,后者用来计算表示的计算图可能比概念图要深得多。鉴于这两种观点的共存,一般在一个模型有多深才算作“深度”模型上并没有达成共识。不过一般深度学习指的是比传

    作者: QGS
    945
    0
  • 深度学习笔记之随机变量及概率分布

    述;它必须伴随着一个概率分布来指定每个状态的可能性。       随机变量可以是离散的或者连续的。离散型随机变量拥有有限或者可数无限多的状态。注意这些状态不一定非要是整数;它们也可能只是一些被命名的状态并且没有数值。连续型随机变量伴随着实数值。      概率分布 (probability

    作者: 小强鼓掌
    728
    1
  • 深度学习导论

    Network)的扩展和应用为基础,这次浪潮的出现标志着深度学习时代的来临。这一阶段的研究主要集中在如何提高深度神经网络的性能和泛化能力上。SVM作为一种经典的机器学习算法,在分类问题上表现出了良好的性能。随着深度学习的不断发展,其应用领域也在不断扩大。深度学习已经成为了许多领域的重要工具,例如自然

    作者: 林欣
    41
    1
  • 深度学习释义

    深度学习是机器学习的一种,而机器学习是实现人工智能的必经路径。深度学习的概念源于人工神经网络的研究,含多个隐藏层的多层感知器就是一种深度学习结构。深度学习通过组合低层特征形成更加抽象的高层表示属性类别或特征,以发现数据的分布式特征表示。研究深度学习的动机在于建立模拟人脑进行分析学

    作者: 某地瓜
    1961
    1
  • 深度学习数学基础-概率与信息论

    4,边缘概率 边缘概率好像应用并不多,所以这里理解定义和概念即可。 边缘概率的通俗理解描述,来源于 数学篇 - 概率之联合概率、条件概率、边缘概率和贝叶斯法则(笔记)。 有时候,我们知道了一组变量的联合概率分布,但想要了解其中一个子集的概率分布。这种定义在子集上的概率分布被称为边缘概率分布(marginal

    作者: 嵌入式视觉
    发表时间: 2023-02-07 16:29:29
    105
    0
  • 适合新手的深度学习综述(4)--深度学习方法

    本文转载自机器之心。深度神经网络在监督学习中取得了巨大的成功。此外,深度学习模型在无监督、混合和强化学习方面也非常成功。4.1 深度监督学习监督学习应用在当数据标记、分类器分类或数值预测的情况。LeCun 等人 (2015) 对监督学习方法以及深层结构的形成给出了一个精简的解释。Deng

    作者: @Wu
    176
    1
  • 深度学习之机器学习基础

    深度学习是机器学习的一个特定分支。要想学好深度学习,必须对机器学习的基本原理有深刻的理解。本章将探讨贯穿本书其余部分的一些机器学习重要原理。我们建议新手读者或是希望更全面了解的读者参考一些更全面覆盖基础知识的机器学习参考书,例如Murphy (2012) 或者Bishop (20

    作者: 小强鼓掌
    837
    2
  • 深度学习学习 XOR

    发挥作用的一个简单例子说起:学习 XOR 函数。       XOR 函数(“异或” 逻辑)是两个二进制值 x1 和 x2 的运算。当这些二进制值中恰好有一个为 1 时,XOR 函数返回值为 1。其余情况下返回值为 0。XOR 函数提供了我们想要学习的目标函数 y = f∗(x)。我们的模型给出了一个函数

    作者: 小强鼓掌
    944
    3
  • 分享深度学习笔记组件学习

    组件学习组件学习不仅使用一个模型的知识,还使用多个模型的知识。人们相信,通过独特的信息组合或输入(包括静态和动态),深度学习可以比单一模式更深入地理解和表现。迁移学习是组件学习的一个非常明显的例子。基于这一思想,对类似问题预先训练的模型权重可用于对特定问题进行微调。为了区分不同类

    作者: 初学者7000
    627
    1
  • 机器学习深度学习区别

    深度学习由经典机器学习发展而来,两者有着相同与不同特点1.完全不同的模式机器学习:使计算机能从数据中学习,并利用其学到的知识来提供答案(通常为预测)。依赖于不同的范式(paradigms),例如统计分析、寻找数据相似性、使用逻辑等深度学习:使用单一技术,最小化人脑劳动。使用被称为

    作者: 极客潇
    1358
    4
  • 深度学习之逻辑回归

            通过定义一族不同的概率分布,我们可以将线性回归扩展到分类情况中。如果我们有两个类,类 0 和类 1,那么我们只需要指定这两类之一的概率。类 1 的概率决定了类 0 的概率,因为这两个值加起来必须等于 1。        我们用于线性回归的实数正态分布是用均值参数化

    作者: 小强鼓掌
    731
    3
  • 深度学习

    深度学习是实现机器学习的一种技术。早期机器学习研究者中还开发了一种叫人工神经网络的算法,但是发明之后数十年都默默无闻。神经网络是受人类大脑的启发而来的:神经元之间的相互连接关系。但是,人类大脑中的神经元可以与特定范围内的任意神经元连接,而人工神经网络中数据传播要经历不同的层,传播

    作者: feichaiyu
    发表时间: 2019-12-16 00:07:41
    3780
    0
  • 深度学习之密度估计或概率分布律函数估计

     在密度估计问题中,机器学习算法学习函数pmodel : Rn → R,其中pmodel(x) 可以解释成样本采样空间的概率密度函数(如果x 是连续的)或者概率分布律函数(如果x 是离散的)。要做好这样的任务(当我们讨论性能度量P 时,我们会明确定义任务是什么),算法需要学习观测到的数据的

    作者: 小强鼓掌
    931
    0
  • 深度学习入门》笔记 - 14

    com/data/forums/attachment/forum/20228/6/1659777983871392224.png) 其中$p_{i}$表示第i个观测点的预测概率值,$y_i$表示第i个观测点的因变量的值(0或者1) 观察$y_i$等于零或者一的情况,可以做出下的变换 ![image.png](https://bbs-img

    作者: 黄生
    59
    2
  • 深度学习发展的学习范式——成分学习

    成分学习    成分学习不仅使用一个模型的知识,而且使用多个模型的知识。人们相信,通过独特的信息组合或投入(包括静态和动态的),深度学习可以比单一的模型在理解和性能上不断深入。    迁移学习是一个非常明显的成分学习的例子, 基于这样的一个想法, 在相似问题上预训练的模型权重可以

    作者: 初学者7000
    716
    5
  • 深度学习初体验

    通过对课程的学习,从对EI的初体验到对深度学习的基本理解,收获了很多,做出如下总结:深度学习是用于建立、模拟人脑进行分析学习的神经网络,并模仿人脑的机制来解释数据的一种机器学习技术。它的基本特点是试图模仿大脑的神经元之间传递,处理信息的模式。最显著的应用是计算机视觉和自然语言处理

    作者: ad123445
    8088
    33
  • 深度学习入门》笔记 - 13

    75455898229675.png) 根据这个函数的图形,预测值和x值的关系看的就比较清楚。基本上就是x大于0时,预测值为1的概率大于0.5,而概率大于0.5,可以认为是分类值1。

    作者: 黄生
    48
    1
  • 深度学习识别滑动验证码

    本节我们就来了解下使用深度学习识别滑动验证码的方法。 1. 准备工作 我们这次主要侧重于完成利用深度学习模型来识别验证码缺口的过程,所以不会侧重于讲解深度学习模型的算法,另外由于整个模型实现较为复杂

    作者: 崔庆才丨静觅
    发表时间: 2021-12-31 16:52:28
    945
    0