已找到以下 10000 条记录

AI平台ModelArts

ModelArts是面向开发者的一站式AI开发平台,为机器学习与深度学习提供海量数据预处理及半自动化标注、大规模分布式Training、自动化模型生成,及端-边-云模型按需部署能力,帮助用户快速创建和部署模型,管理全周期AI工作流。
AI平台ModelArts
ModelArts是面向开发者的一站式AI开发平台,为机器学习与深度学习提供海量数据预处理及半自动化标注、大规模分布式Training、自动化模型生成,及端-边-云模型按需部署能力,帮助用户快速创建和部署模型,管理全周期AI工作流。
  • 深度学习计算服务平台

    智能制造 视频应用 政府行业 算法模型 AI解决方案/集成服务

    深度学习计算服务平台是中科弘云面向有定制化AI需求的行业用户,推出的AI开发平台,提供从样本标注、模型训练、模型部署的一站式AI开发能力,帮助用户快速训练和部署模型,管理全周期AI工作流。平台为开发者设计了众多可帮助降低开发成本的开发工具与框架,例如AI数据集、AI模型与算力等。

    商家: 中科弘云科技(北京)有限公司 交付方式: License
    ¥40000.0/个

    深度学习计算服务平台是中科弘云面向有定制化AI需求的行业用户,推出的AI开发平台,提供从样本标注、模型训练、模型部署的一站式AI开发能力,帮助用户快速训练和部署模型,管理全周期AI工作流。平台为开发者设计了众多可帮助降低开发成本的开发工具与框架,例如AI数据集、AI模型与算力等。

    智能制造 视频应用 政府行业 算法模型 AI解决方案/集成服务
    ¥40000.0/个
  • 深度学习笔记之概率

        概率论是用于表示不确定性陈述(statement) 的数学框架。它不仅提供了量化不确定性的方法,也提供了用于导出新的不确定性陈述的公理。在人工智能领域,我们主要以两种方式来使用概率论。首先,概率法则告诉我们AI系统应该如何推理,所以我们设计一些算法来计算或者近似由概率论导出

    作者: 小强鼓掌
    836
    1
  • 深度学习笔记之频率概率和贝叶斯概率

     尽管我们明确需要一种表示和推理不确定性的方法,但是概率论能够提供所有我们想要的人工智能领域的工具并不是那么显然。概率论最初的发展是为了分析事件发生的频率。可以很容易地看出概率论,对于像在扑克牌游戏中抽出一手特定的牌这种事件的研究中,是如何使用的。这类事件往往是重复的。当我们说一个结果发生的概率为 p,这意味着如果我们反复实验

    作者: 小强鼓掌
    628
    1
  • 深度学习之多个概率分布

    (2014) 提出的论点和经验证据表明,在这个情况下几何平均与算术平均表现得差不多。多个概率分布的几何平均不能保证是一个概率分布。为了保证结果是一个概率分布,我们要求没有子模型给某一事件分配概率 0,并重新标准化所得分布。

    作者: 小强鼓掌
    631
    4
  • 深度学习笔记之为什么要用概率

    对干净和确定的环境中工作,机器学习对于概率论的大量使用不得不令人吃惊。      这是因为机器学习必须始终处理不确定量,有时也可能需要处理随机 (非确定性) 量。不确定性和随机性可能来自多个方面。研究人员至少从 20 世纪 80 年代开始就对使用概率论来量化不确定性提出了令人信服

    作者: 小强鼓掌
    647
    1
  • 深度学习之结构化概率模型

            机器学习的算法经常会涉及到在非常多的随机变量上的概率分布。通常,这些概率分布涉及到的直接相互作用都是介于非常少的变量之间的。使用单个函数来描述整个联合概率分布是非常低效的 (无论是计算还是统计)。代替使用单一的函数来表示概率分布,我们可以把概率分布分割成许多因子的乘积形式。例如,假设我们有三个随机变量

    作者: 小强鼓掌
    1078
    4
  • 深度学习模型优化

    项目实习生 深度学习模型优化 深度学习模型优化 领域方向:人工智能 工作地点: 深圳 深度学习模型优化 人工智能 深圳 项目简介 为AI类应用深度学习模型研发优化技术,包括神经网络结构设计,NAS搜索算法,训练算法优化,AI模型编译优化等。 岗位职责 负责调研深度学习模型优化技术

  • 深度学习笔记之先验概率分布

    是考虑数据集上函数(可以看作是随机的)的随机变量。贝叶斯统计的视角完全不同。贝叶斯用概率反映知识状态的确定性程度。数据集能够直接观测到,因此不是随机的。另一方面,真实参数 θ 是未知或不确定的,因此可以表示成随机变量。在观察到数据前,我们将 θ 的已知知识表示成先验概率分布 (prior probability di

    作者: 小强鼓掌
    1141
    4
  • 跟着MindSpore一起学习深度概率

    享的是深度概率学习系列,名字中包含“深度”和“概率”两个词,其分别对应的就是深度学习和贝叶斯理论,也叫贝叶斯深度学习深度概率学习简单来说主要是这两方面的融合。l 深度学习深度概率学习的关系深度学习深度概率学习有什么关系呢?一图告诉你它们的联系。左边DNN代表的是深度神经网络

    作者: chengxiaoli
    1969
    0
  • 分享GFlowNets统一生成模型Bengio等人数页论文给讲通了

    学习等。第二作者陈天琦是多伦多大学博士,现在是 Meta AI 的研究科学家。2018 年,陈天琦等人的论文《Neural Ordinary Differential Equations》获得 NeurIPS 最佳论文奖,引起了极大关注。他的主要研究兴趣是概率深度学习。第三作者Nikolay

    作者: QGS
    47
    1
  • 深度学习笔记之边缘概率

           有时候,我们知道了一组变量的联合概率分布,想要了解其中一个子集的概率分布。这种定义在子集上的概率分布被称为边缘概率分布(marginal probability distribution)。例如,假设有离散型随机变量x 和y,并且我们知道P(x; y)。我们可以依据下面的求和法则(sum

    作者: 小强鼓掌
    731
    1
  • 深度学习模型预测 - 数据湖探索 DLI

    深度学习模型预测 深度学习已经广泛应用于图像分类、图像识别和语音识别等不同领域,DLI服务中提供了若干函数实现加载深度学习模型并进行预测的能力。 目前可支持的模型包括DeepLearning4j 模型和Keras模型。由于Keras它能够以 TensorFlow、CNTK或者 Theano

  • 深度学习模型预测 - 数据湖探索 DLI

    深度学习模型预测 深度学习已经广泛应用于图像分类、图像识别和语音识别等不同领域,DLI服务中提供了若干函数实现加载深度学习模型并进行预测的能力。 目前可支持的模型包括DeepLearning4j 模型和Keras模型。由于Keras它能够以 TensorFlow、CNTK或者 Theano

  • AI系统创新Lab_News_【论文笔记】语音情感识别之手工特征深度学习方法

    绑定邮箱 温馨提示 请您在新打开的页面绑定邮箱! 注意: 绑定邮箱完成前,请不要关闭此窗口! 已完成绑定 【论文笔记】语音情感识别之手工特征深度学习方法 本文章主体基于PilgrimHui的论文笔记:《语音情感识别(三)手工特征+CRNN》,在原来基础上,补充了数据处理部分以及论文方

  • AI平台ModelArts入门

    ter Notebook编程环境的操作 了解详情 最佳实践 最佳实践 口罩检测(使用新版自动学习实现物体检测应用) 该案例是使用华为云一站式AI开发平台ModelArts的新版“自动学习”功能,基于华为云AI开发者社区AI Gallery中的数据集资产,让零AI基础的开发者完成“物体检测”的AI模型的训练和部署。

  • 全世界的植被高度变化ETH Global Sentinel-2 10米冠层高度(2020年)

    ntinel-2这样的光学卫星图像提供了全球密集的观测,但不能直接测量垂直结构。通过融合GEDI和Sentinel-2,我们开发了一个概率深度学习模型,从地球上任何地方的Sentinel-2图像中检索树冠高度,并对这些估计的不确定性进行量化。  所提出的方法减少了从卫星

    作者: 此星光明
    发表时间: 2023-04-16 22:13:23
    129
    0
  • AI平台ModelArts资源

    获取海量开发者技术资源、工具 开发者计划 使能开发者基于开放能力进行技术创新 开发支持 专业高效的开发者在线技术支持服务 开发者学堂 云上学习、实验、认证的知识服务中心 开发者活动 开发者实训、热门活动专区 社区论坛 专家技术布道、开发者交流分享的平台 文档下载 AI平台ModelArts文档下载

  • D-Plan AI 生态伙伴计划

    D-Plan AI 生态伙伴计划 D-Plan AI 生态伙伴计划 D-Plan AI 生态伙伴计划是围绕华为云一站式AI开发平台ModelArts推出的一项合作伙伴计划,旨在与合作伙伴一起构建合作共赢的AI生态体系,加速AI应用落地,华为云向伙伴提供培训、技术、营销和销售的全面支持。

  • 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型 - CodeArts IDE Online

    基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型 概要 准备工作 导入和预处理训练数据集 创建和训练模型 使用模型

  • 概要 - CodeArts IDE Online

    型完成简单的图像分类。 父主题: 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型