检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
利用预置或自定义的数据指令对原始数据进行处理,并根据设定的轮数生成新数据。该过程能够在一定程度上扩展数据集,增强训练模型的多样性和泛化能力。 合成文本类数据集 标注文本类数据集 为无标签数据集添加准确的标签,确保模型训练所需的高质量数据。平台支持人工标注和AI预标注两种方式,用户可根据需求选择合适的标注方式
found:未找到x-auth-token参数。 token解析失败,请检查获取token的方法,请求体信息是否填写正确,token是否正确;检查获取token的环境与调用的环境是否一致。 token超时(token expires) ,请重新获取token,使用不过期的token。 请检查AK/SK
"是的,我试了 还是不行"} 数据质量:若数据格式没有问题,仍然发现模型效果不好,您可以根据具体问题针对性的提升您的数据质量。比如,随着对话轮数的增加,模型出现了遗忘,可以检查构造的训练数据中轮数是否普遍较少,建议根据实际情况增加数据中的对话轮数。 父主题: 大模型微调训练类问题
、数据过滤、数据打标三类,视频类加工算子能力清单见表1。 表1 视频类清洗算子能力清单 算子分类 算子名称 算子描述 数据提取 镜头拆分 根据视频中的镜头场景变化将长视频拆分为短视频片段,如果某个镜头片段的长度超过设定的时间阈值,该镜头片段将按时长进行进一步拆分。 数据过滤 视频裁剪
的进行,Loss值不断减小,直到收敛到一个较小的值。 验证损失值 模型在验证集上的损失值。值越小,意味着模型对验证集数据的泛化能力越好。 获取训练日志 单击训练任务名称,可以在“日志”页面查看训练过程中产生的日志。 对于训练异常或失败的任务可以通过训练日志定位训练失败的原因。典型
数设置的不合理而导致了欠拟合,模型没有学到任何知识。请检查训练参数中的 “训练轮次”或“学习率”等参数的设置,适当增大“训练轮次”的值,或根据实际情况调整“学习率”的值,帮助模型更好收敛。 数据质量:请检查训练数据的质量,若训练样本和目标任务不一致或者分布差异较大,则会加剧该现象。
用。 图1 “创意活动方案生成”应用 如图2,在应用页面,输入所需的活动主题与活动描述,单击“创作”。 图2 活动主题与描述 该预置应用将根据所输入的主题与描述,在“结果生成”中生成相应的创意活动方案。 图3 创意活动方案生成结果
通用文本(/text/completions) Java、Python、Go、.NET、NodeJs、PHP 给定一个提示和一些参数,模型会根据这些信息生成一个或多个预测的补全,还可以返回每个位置上不同词语的概率。它可以用来做文本生成、自动写作、代码补全等任务。 开发环境要求 华为云盘古大模型推理SDK要求:
在“创建压缩任务”页面,选择需要压缩的基础模型,支持选择已发布模型或未发布模型。 选择压缩策略。除INT8压缩策略外,部分模型支持INT4压缩策略,可在选择模型后,根据页面展示的策略进行选择。 INT8:该压缩策略将模型参数压缩至8位字节,可以有效降低推理显存占用。 INT4:该压缩策略与INT8相比,可
{"context": ["你对李健怎么看 | 音乐诗人李健。请根据以上背景补全以下问题: 喜欢么"], "target": "喜欢李健么"} {"context": ["孩子就是不写作业 | 还是写作业吧。请根据以上背景补全以下问题: 你有什么办法让他写作业吗"], "target":
的准确性越高。 召回率 召回率是指在所有实际为正类的样本中,被模型正确预测为正类的比例。数值越高,表明模型在检测正类样本时的全面性越高。 获取训练日志 单击训练任务名称,可以在“日志”页面查看训练过程中产生的日志。 对于训练异常或失败的任务可以通过训练日志定位训练失败的原因。典型
以确保满足业务需求,然后将其部署和调用,用于实际应用。 CV大模型选择建议 选择合适的CV大模型类型有助于提升训练任务的准确程度。您可以根据模型适用场景,选择合适的模型,从而提高模型的整体效果,详见表1。 表1 CV大模型的类型 模型名称 适用场景 说明 Pangu-CV-ObjectDetection-N-2
Studio大模型开发平台为用户提供了多种规格的NLP大模型,以满足不同场景和需求。不同模型在处理上下文token长度和功能上有所差异,以下是当前支持的模型清单,您可以根据实际需求选择最合适的模型进行开发和应用。 表1 盘古NLP大模型规格 模型支持区域 模型名称 可处理最大上下文长度 可处理最大输出长度 说明
应用编排页面 步骤2:配置Prompt 创建应用后,需要撰写提示词(Prompt),为Agent设定人设、目标、核心技能、执行步骤。 应用会根据盘古NLP大模型对提示词的理解,来选择使用插件、工作流或知识库,响应用户问题。因此,一个好的提示词可以让模型更好地理解并执行任务,应用效果与提示词息息相关。
的准确性越高。 召回率 召回率是指在所有实际为正类的样本中,被模型正确预测为正类的比例。数值越高,表明模型在检测正类样本时的全面性越高。 获取训练日志 单击训练任务名称,可以在“日志”页面查看训练过程中产生的日志。 对于训练异常或失败的任务可以通过训练日志定位训练失败的原因。典型
调后能够迅速掌握并理解特定行业的专业知识和术语,从而深刻把握行业特性。这种快速学习与适应能力,为各行业企业和机构带来了极大的便利。它们可以根据具体需求,利用盘古大模型构建或优化业务流程,提高工作效率,降低运营成本,并为客户提供更精准、个性化的服务。 模型效果优秀 经过海量数据训练
关性,而负值则表示反向相关。 RQE 衡量预测值与真实值之间差距的指标。它是所有单个观测的相对误差的平方和。该值越小,代表模型性能越好。 获取训练日志 单击训练任务名称,可以在“日志”页面查看训练过程中产生的日志。对于训练异常或失败的任务也可以通过训练日志定位训练失败的原因。典型
ModelArts Studio大模型开发平台为用户提供了多种规格的科学计算大模型,以满足不同场景和需求。以下是当前支持的模型清单,您可以根据实际需求选择最合适的模型进行开发和应用。 表1 盘古科学计算大模型规格 模型支持区域 模型名称 说明 西南-贵阳一 Pangu-AI4S-Ocean_24h-20241130
能支持。 模型训练:在模型开发的第一步,ModelArts Studio大模型开发平台为用户提供了丰富的训练工具与灵活的配置选项。用户可以根据实际需求选择合适的模型架构,并结合不同的训练数据进行精细化训练。平台支持分布式训练,能够处理大规模数据集,从而帮助用户快速提升模型性能。
被判定为账户欠费。欠费后,可能会影响云服务资源的正常运行,需要及时充值。详细介绍请参见欠费说明。 停止计费 包周期资源到期后,保留期时长将根据“客户等级”定义。按需计费模式下,若账户欠费,保留期时长同样依据“客户等级”定义。详细介绍请参见停止计费。