检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
紧密中心度算法(Closeness Centrality)计算一个节点到所有其他可达节点的最短距离的倒数,进行累积后归一化的值。紧密中心度可以用来衡量信息从该节点传输到其他节点的时间长短。节点的“Closeness Centrality”越大,其在所在图中的位置越靠近中心。 适用场景 紧密中心度算法(Closeness
Paths)参数说明 参数 是否必选 说明 类型 取值范围 默认值 source 是 输入路径的起点ID String - - target 是 输入路径的终点ID String - - directed 否 是否考虑边的方向 Bool true或false false 注意事项 无。 示例 输入参数source
Sets)可以得到两个点集合(群体集合)所共有的邻居(即两个群体临域的交集),直观的发现与两个群体共同联系的对象,如发现社交场合中的共同好友、消费领域共同感兴趣的商品、社区群体共同接触过的人,进一步推测两点集合之间的潜在关系和联系程度。 适用场景 点集共同邻居算法适用于进行关系发掘、产品/好友推荐等图分析技术。
k跳算法(k-hop) 概述 k跳算法(k-hop)从起点出发,通过宽度优先搜索(BFS),找出k层与之关联的所有节点。找到的子图称为起点的“ego-net”。k跳算法会返回ego-net中节点的个数。 适用场景 k跳算法(k-hop)适用于关系发现、影响力预测、好友推荐等场景。 参数说明 表1
Boolean 是否忽略错误,比如待删除的边不存在;默认值为false,不忽略,注意Json格式错误不会忽略。 表3 edges参数说明 参数 是否必选 类型 说明 source 是 String 边的source节点。 target 是 String 边的target节点。 label 否
互联网应用 在移动互联网时代,面对庞大的社交关系,媒体传播网络,GES可以帮助客户快速、有效的发现海量数据中隐含的信息。 该场景能帮助您实现以下功能。 推荐好友、商品或资讯 通过好友关系、用户画像、行为相似性、商品相似性、资讯传播的途径等,实现好友、商品或资讯的个性化推荐。 用户分群 通过
否 边上权重 String 空或字符串 空:边上的权重、距离默认为“1” 字符串:对应的边上的属性将作为权重,当某边没有对应属性时,权重将默认为“1” 说明: 边上权重应大于0。 weight 注意事项 Louvain算法只生成最后的社区结果,不保存层次化结果。 示例 输入参数coverage=0
Array of graphs objects 返回的图列表。 result String 查询成功时值为success,失败时值为failed。 表3 graphs 参数 类型 说明 graph_name String 返回的图名。 idType String ID类型。 idLength
执行失败时,用于显示错误信息。 errorCode String 系统提示信息。 执行成功时,字段可能为空。 执行失败时,用于显示错误码。 jobId String 查询节点任务ID。请求失败时字段为空。 请求示例 生成数据资产。 POST /ges/v1.0/{project_id}/graphs/{gr
是否考虑边的方向 Bool true或false false timeWindow 否 用于进行时间过滤的时间窗 Json 具体请参见表2。 - 表2 timeWindow参数说明 参数 是否必选 说明 类型 取值范围 默认值 filterName 否 用于进行时间过滤的时间属性名称
执行失败时,用于显示错误码。 data Object 查询结果。请求失败时字段为空。 表3 data参数说明 参数 类型 说明 outputs Integer 删除label时,被删除的相关点/边数量。 请求示例 删除label,同时删除该label相关的点、边。 DELETE http://{SERVER_URL}/ges/v1
el旁的第二个“”按钮,可在画布中隐藏当前label。 图5 隐藏label 隐藏当前选择的label的点和边 在绘图区,单击图中任意一个点,被选中的点会显示为。 表示label隐藏。在图数据中默认是全部展示的,单击label旁的“眼睛”按钮,可隐藏当前选择的label的点和边(即在画布中不展示)。
source 是 输入路径的起点ID String - - target 是 输入路径的终点ID String - - directed 否 是否考虑边的方向 Bool true或false false weight 否 边上权重 String 空或字符串 空:边上的权重、距离默认为“1”。
执行成功时,字段可能为空。 执行失败时,用于显示错误码。 jobId String 查询节点任务ID。请求失败时字段为空。 jobType String 执行该异步任务的jobType。 请求示例 生成以label为点,label间关系为边的schema结构。 POST http://{SERVER_URL}/ges/v1
根据网页(节点)之间相互的超链接进行计算的技术,用来体现网页(节点)的相关性和重要性。 如果一个网页被很多其他网页链接到,说明这个网页比较重要,也就是其PageRank值会相对较高。 如果一个PageRank值很高的网页链接到其他网页,那么被链接到的网页的PageRank值会相应地提高。
PageRank算法。该算法继承了经典PageRank算法的思想,利用图链接结构来递归计算各节点的重要性。与PageRank算法不同的是,为了保证随机行走中各节点的访问概率能够反映出用户的偏好,PersonalRank算法在随机行走中的每次跳转会以(1-alpha)的概率返回到source节点,因此可以
按需计费资源 对于按需计费模式的资源,若不再使用这些资源且需停止计费,请删除相应资源。需要注意的是,停止运行的图实例的只是不收取基础资源图规格(边数)的费用,您存储到OBS中的图数据及OBS桶、公网带宽等仍然正常计费。因此删除图实例才能避免继续产生费用。 通过账单查找云服务资源并停止计费
graphName 是 String 图名称。输入长度在4位到32位之间,必须以字母开头,可以包含字母、数字或者下划线,不能包含其他的特殊字符。 idType 是 String id的类型, 可选值(hash,fixedLengthString,varString)。 idLength 否 Integer
Propagation)是一种基于图的半监督学习方法,其基本思路是用已标记节点的标签信息去预测未标记节点的标签信息。利用样本间的关系建图,节点包括已标注和未标注数据,其边表示两个节点的相似度,节点的标签按相似度传递给其他节点。标签数据就像是一个源头,可以对无标签数据进行标注,节点的相似度越大,标签越容易传播。
对于该source节点的随机游走将提前结束。 Int 1~2000 1000 label 否 希望输出的点的类型。 说明: 其值为空时,将不考虑点的类型,输出算法原始计算结果。 对其赋值时,将从计算结果中过滤出具有该“label”的点的返回。 String 节点label - directed