检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
对于使用AI进行预标注的图片Caption任务可设置以下两种方式的“标注要求”: 选择“全部标注”:要求标注人员需要对全部的数据进行人工标注后才可提交标注结果。 选择“可部分标注”:允许标注人员在确认AI预标注满足要求后,直接使用AI预标注功能完成数据集的标注并提交标注结果。 标
在选择和使用盘古大模型时,了解不同模型所支持的操作行为至关重要。不同模型在预训练、微调、模型评测、在线推理和能力调测等方面的支持程度各不相同,开发者应根据自身需求选择合适的模型。以下是盘古NLP大模型支持的具体操作: 表2 盘古NLP大模型支持的能力 模型 预训练 微调 模型压缩 在线推理
> 标注管理”,单击页面右上角“创建标注任务”。 图2 标注管理 在“创建标注任务”页面选择需要标注的加工后的文本类数据集,并设置标注项。 设置标注项时,不同类型的数据文件对应的标注项也有所差异,可基于页面提示进行设置。 图3 创建标注任务 单击“下一步”设置标注人员及信息,单击“完成创建”。
"V", "S"]} geo_range:定义了数据覆盖的地理范围,纬度(lat)从-90.0到90.0,经度(lon)从0.0到360.0。 time_range:数据的时间范围,时间戳格式为毫秒数。 total_size:数据文件的总大小,单位为字节。 surface_featur
对于使用AI进行预标注的视频Caption任务可设置以下两种方式的“标注要求”: 选择“全部标注”:要求标注人员需要对全部的数据进行人工标注后才可提交标注结果。 选择“可部分标注”:允许标注人员在确认AI预标注满足要求后,直接使用AI预标注功能完成数据集的标注并提交标注结果。 标
调用说明 盘古大模型提供了REST(Representational State Transfer)风格的API,支持您通过HTTPS请求调用,调用方法请参见如何调用REST API。 调用API时,需要用户网络可以访问公网。 父主题: 使用前必读
以下示例要求模型以幼儿园老师的风格回答问题: { "messages": [ { "role": "system", "content": "请用幼儿园老师的口吻回答问题,注意语气温和亲切,通过提问、引导、赞美等方式,激发学生的思维和想象力。"
在左侧导航栏中选择“Agent开发”,将跳转至Agent开发平台。 单击左侧导航栏“工作台”,在“工作流”页签中,鼠标右键单击工作流,进行工作流的复制、复制ID、删除。 父主题: 创建与管理工作流
变更计费模式 盘古大模型的模型订阅、数据托管单元、推理单元默认采用包周期计费,数据智算单元、数据通算单元默认采用按需计费,训练单元采用包周期和按需计费两种方式。 盘古大模型使用周期内不支持变更配置。
图片支持tar,Caption支持jsonl 图片+Caption指的是一张图片和与之相关的文字描述,Caption是对图片内容的简短说明或解释,帮助人们理解图片所表达的信息。 图片:图片以tar包格式存储,可以多个tar包。tar包存储原始的图片,每张图片命名要求唯一(如abc.jpg)。 Caption
mp4或avi格式的所有视频文件会被同时上传导入,具体格式要求详见表1。 表1 视频类数据集格式要求 文件内容 文件格式 文件要求 视频 mp4或avi 支持mp4、avi视频格式上传,所有视频可以放在多个文件夹下,每个文件夹下可以同时包含mp4或avi格式的视频。 数据集最大1
预付费,按照订单的购买周期结算 1个月~1年 训练服务 训练服务 按需计费 训练单元 后付费,根据服务实际消耗量计费 按实际任务时长,时长精确到秒。 包周期计费 训练单元 预付费,按照订单的购买周期结算 1个月~1年 推理服务 推理服务 包周期计费 推理单元 预付费,按照订单的购买周期结算
同一资源是否同时支持包年/包月和按需计费两种模式 盘古大模型的模型订阅、数据托管单元、推理单元默认采用包周期计费。 数据智算单元、数据通算单元默认采用按需计费。 训练单元采用包周期和按需计费两种方式。 两种计费方式不能共存,只支持按照一种计费方式进行订购。 父主题: 计费FAQ
Boolean 是否仅统计输入字符的Token数 true:仅统计输入字符串的Token数; false:统计输入字符串和推理过程产生字符的总Token数。 响应参数 表4 响应Body参数 参数 参数类型 描述 tokens List<String> 分解出的Token列表。 token_number
过滤文本长度不在“文本长度范围”内的图文对。一个中文汉字或一个英文字母,文本长度均计数为1。 图文文本语言过滤 通过语种识别模型得到图文对的文本语种类型,“待保留语种”之外的图文对数据将被过滤。 图文去重 基于结构化图片去重 判断相同文本对应不同的图片数据是否超过阈值,如果超过则去重。
选择“盘古大模型”。 模型类型 选择“NLP大模型”。 部署模型 选择需要进行部署的模型。 部署方式 云上部署:算法部署至平台提供的资源池中。 最大TOKEN长度 模型可最大请求的上下文TOKEN数。 架构类型 算法所支持的结构类型,模型选择完成后,会自动适配架构类型。 安全护栏 选择模式 安
个平台预置好的全球中期降水预测模型,并选择对应的全球中期天气要素预测模型。并且至少有一个中期天气要素模型时间分辨率要小于等于降水模型时间分辨率。 部署模型 在“从资产选模型”选择所需模型。 部署方式 云上部署:算法部署至平台提供的资源池中。 边缘部署:算法部署至客户的边缘设备中。
如果需要将该审核任务移交给其他人员,可以单击操作列“移交”设置移交人员以及移交的数量。 图3 移交审核任务 进入审核页面后,可通过单击“通过”或“不通过”逐一对数据进行审核,直至所有数据审核完成,期间可对不满足要求的数据进行驳回,驳回后将分给标注人员重新标注。 父主题: 标注文本类数据集
如果需要将该审核任务移交给其他人员,可以单击操作列“移交”设置移交人员以及移交的数量。 图3 移交审核任务 进入审核页面后,可通过单击“通过”或“不通过”逐一对数据进行审核,直至所有数据审核完成,期间可对不满足要求的数据进行驳回,驳回后将分给标注人员重新标注。 父主题: 标注图片类数据集
如果需要将该审核任务移交给其他人员,可以单击操作列“移交”设置移交人员以及移交的数量。 图3 移交审核任务 进入审核页面后,可通过单击“通过”或“不通过”逐一对数据进行审核,直至所有数据审核完成,期间可对不满足要求的数据进行驳回,驳回后将分给标注人员重新标注。 父主题: 标注视频类数据集