检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
1”,以此类推。 export ASCEND_RT_VISIBLE_DEVICES=0,1 NPU卡编号可以通过命令npu-smi info查询。 执行权重转换。 cd autosmoothquant/examples/ python smoothquant_model.py --model-path
1”,以此类推。 export ASCEND_RT_VISIBLE_DEVICES=0,1 NPU卡编号可以通过命令npu-smi info查询。 执行权重转换。 cd autosmoothquant/examples/ python smoothquant_model.py --model-path
n**\Scripts”。 配置pip源。以Windows环境为例,配置pip源方法如下: 新建pip文件夹。启动cmd,输入set命令,查看APPDATA路径。并在APPDATA对应路径下创建pip文件夹。文件内容示例如下: C:\Users\xxx>set ALLUSERSP
docker-engine-selinux.noarch docker-runc.aarch64 配置IP转发,用于容器内的网络访问。执行以下命令查看net.ipv4.ip_forward配置项的值,如果为1,可跳过此步骤。 sysctl -p | grep net.ipv4.ip_forward
写说明中的apis参数说明,示例代码请参见apis参数代码示例。 确认信息填写无误,单击“立即创建”,完成模型创建。 在模型列表中,您可以查看刚创建的模型及其对应的版本。当模型状态变更为“正常”时,表示模型创建成功。在此页面,您还可以进行创建新版本、快速部署服务、发布模型等操作。
指令监督微调/ppo:alpaca_en_demo rm/dpo:dpo_en_demo 多模态数据集(图像):mllm_demo,identity 【可选】注册在dataset_info.json文件数据集名称。如选用定义数据请参考准备数据(可选)配置dataset_info.json文件,并将数据集存放于dataset_info
1”,以此类推。 export ASCEND_RT_VISIBLE_DEVICES=0,1 NPU卡编号可以通过命令npu-smi info查询。 执行权重转换。 cd autosmoothquant/examples/ python smoothquant_model.py --model-path
1”,以此类推。 export ASCEND_RT_VISIBLE_DEVICES=0,1 NPU卡编号可以通过命令npu-smi info查询。 执行权重转换。 cd autosmoothquant/examples/ python smoothquant_model.py --model-path
1”,以此类推。 export ASCEND_RT_VISIBLE_DEVICES=0,1 NPU卡编号可以通过命令npu-smi info查询。 执行权重转换。 cd autosmoothquant/examples/ python smoothquant_model.py --model-path
是 String 用户项目ID。获取方法请参见获取项目ID和名称。 workspace_id 是 String 工作空间ID。获取方法请参见查询工作空间列表。未创建工作空间时默认值为“0”,存在创建并使用的工作空间,以实际取值为准。 请求参数 表2 请求Header参数 参数 是否必选
软件包名称中的xxx表示时间戳。 包含了本教程中使用到的模型训练代码。代码包具体说明请参见模型软件包结构说明。 获取路径:Support-E,在此路径中查找下载ModelArts 6.3.910 版本。 说明: 如果上述软件获取路径打开后未显示相应的软件信息,说明您没有下载权限,请联系您所在企业的华为方技术支持下载获取。
软件包名称中的xxx表示时间戳。 包含了本教程中使用到的模型训练代码。代码包具体说明请参见模型软件包结构说明。 获取路径:Support-E,在此路径中查找下载ModelArts 6.3.911 版本。 说明: 如果上述软件获取路径打开后未显示相应的软件信息,说明您没有下载权限,请联系您所在企业的华为方技术支持下载获取。
准备训练模型适用的容器镜像。 训练 启动训练 介绍各个训练阶段:指令微调、PPO强化训练、RM奖励模型、DPO偏好训练使用全参/lora训练策略进行训练任务、性能查看。 父主题: 主流开源大模型基于DevServer适配LlamaFactory PyTorch NPU训练指导(6.3.910)
docker-engine-selinux.noarch docker-runc.aarch64 配置IP转发,用于容器内的网络访问。执行以下命令查看net.ipv4.ip_forward配置项的值,如果为1,可跳过此步骤。 sysctl -p | grep net.ipv4.ip_forward
docker-engine-selinux.noarch docker-runc.aarch64 配置IP转发,用于容器内的网络访问。执行以下命令查看net.ipv4.ip_forward配置项的值,如果为1,可跳过此步骤。 sysctl -p | grep net.ipv4.ip_forward
ModelArts最佳实践案例列表 在最佳实践文档中,提供了针对多种场景、多种AI引擎的ModelArts案例,方便您通过如下案例快速了解使用ModelArts完成AI开发的流程和操作。 LLM大语言模型训练推理场景 样例 场景 说明 主流开源大模型基于DevServer适配ModelLink
Name),AK(Access Key Id),SK(Secret Access Key)。 图1 credential.csv文件内容 AK/SK生成步骤: 注册并登录管理控制台。 单击右上角的用户名,在下拉列表中单击“我的凭证”。 单击“访问密钥”。 单击“新增访问密钥”,进入“身份验证”页面。
准备训练模型适用的容器镜像。 训练 启动训练 介绍各个训练阶段:指令微调、PPO强化训练、RM奖励模型、DPO偏好训练使用全参/lora训练策略进行训练任务、性能查看。 父主题: 主流开源大模型基于DevServer适配LlamaFactory PyTorch NPU训练指导(6.3.911)
在“鉴权管理”页面,单击“创建API Key”,填写描述信息后,单击“确认”会返回“您的密钥”,请复制保存密钥,单击“关闭”后将无法再次查看密钥。 最多支持创建5个密钥,密钥只会在新建后显示一次,请妥善保存。 当密钥丢失将无法找回,请新建API Key获取新的访问密钥。 步骤2:调用MaaS模型服务进行预测
准备工作 在定位精度问题之前,首先需要排除训练脚本及参数配置等差异的干扰。目前大部分精度无法对齐的问题都是由于模型超参数、Python三方库版本、模型源码等与标杆环境(GPU/CPU)设置的不一致导致,为了在定位过程中少走弯路,需要在定位前先对训练环境及代码做有效排查。此外,问题