已找到以下 10000 条记录
  • 机器学习笔记之评估方法

    通常,我们可通过实验测试来对学习器的泛化误差进行评估并进而做出选择为此,需使用一个 “测试集” (testing set)来测试学习器对新样本的判别能力,然后以测试栠上的 " 测试误差” (testing error)作为泛化误差的近似. 通常我们假设测试样本也是从样本真实分布中独立同分布采样曲得.

    作者: ypr189
    723
    1
  • 机器学习(二)——引入

    yy^​来代表我们在训练好的模型上通过输入获得相应的预测值。 由于训练集中有多个样本,所以我们一般用(xi,yi)(x^{i},y^{i})(xi,yi)来表示第i个样本的特征和第i个样本对应的输出。 在这一讲下面的学习中,我们会用到最简单的模型来开始我们的机器学习之路,即线性回归模型。 2.2 代价函数 在这

    作者: ArimaMisaki
    发表时间: 2022-04-18 10:56:54
    664
    0
  • 大数据机器学习算法工程师

    博士招聘 大数据机器学习算法工程师 大数据机器学习算法工程师 领域方向:大数据 工作地点: 南京 大数据机器学习算法工程师 大数据 南京 岗位职责 1、与产品及业务团队紧密协作,理解业务、产品的背景与需求,实现算法和业务的紧密对接; 2、研究先进AI算法模型;运用机器学习相关算法、技

  • 机器学习算法选择(分类一)

    某度量方式下,数据中同类样本之间的距离尽可能减小,而不同类别样本之间的距离尽可能增大。常用的度量学习方法分为全局度量学习和局部度量学习。深度学习也可以与度量学习相结合,利用深度神经网络自适应学习特征表达,当数据量较多时,推荐使用深度度量学习。深度度量学习己经成功用于人脸识别等领域。

    作者: 黄生
    15
    0
  • 机器学习《Machine Learning1》----机器学习经典总结:入门必读

    出模式指引业务的改善。大部分数据挖掘中的算法是机器学习的算法在数据库中的优化。 统计学习 统计学习近似等于机器学习。统计学习是个与机器学习高度重叠的学科。因为机器学习中的大多数方法来自统计学,甚至可以认为,统计学的发展促进机器学习的繁荣昌盛。例如著名的支持向量机算法,就是源自统

    作者: 是Dream呀
    发表时间: 2022-03-13 16:45:22
    772
    0
  • 机器学习的应用

    析与挖掘。 数据分析与挖掘技术是机器学习算法和数据存取技术的结合,利用机器学习提供的统计分析、知识发现等手段分析海量数据,同时利用数据存取机制实现数据的高效读写。机器学习在数据分析与挖掘领域中拥有无可取代的地位,2012年Hadoop进军机器学习领域就是一个很好的例子。 模式识别

    作者: QGS
    840
    1
  • 机器学习的定义

    不是绝对),数据越多,最后机器学习生成的模型预测的效果越好。通过我拟合直线的过程,我们可以对机器学习过程做一个完整的回顾。首先,我们需要在计算机中存储历史的数据。接着,我们将这些 数据通过机器学习算法进行处理,这个过程在机器学习中叫做“训练”,处理的结果可以被我们用来对新的数据进

    作者: 小强鼓掌
    846
    1
  • 【转载】机器学习基础

    有九个要研究机器学习,中间还一些弄不清深度学习机器学习的关系,实际上是想搞深度学习。原本深度学习(深度神经网络)只是机器学习领域一个分支,但因为其最近大火,导致对整个领域出现了这样的划分:深度的和非深度,或者说深度的和传统的。虽然现在自然语言处理研究主要用深度学习,但因为很多概

    作者: 极客潇
    2068
    2
  • 机器学习算法建模

    了用于建立模型的标签数据,以便学习如何从输入中预测输出。    无监督学习:是一种只利用输入X变量的机器学习任务。X变量是未标记的数据,学习算法在建模时使用的是数据的固有结构。    强化学习:是一种决定下一步行动方案的机器学习任务,它通过试错学习(trial and error

    作者: QGS
    1061
    3
  • 机器学习(三):线性模型

    🌟🌟🌟✨✨✨ 前言: 机器学习是目前信息技术中最激动人心的方向之一,其应用已经深入到生活的各个层面且与普通人的日常生活密切相关。🍻🍻🍻 💞作为刚入门机器学习的Dream,同样对机器学习有着极高的兴趣 💞本文为清华大学最新出版的《机器学习》教材的Learning Notes

    作者: 是Dream呀
    发表时间: 2022-04-11 10:06:43
    1040
    0
  • 华为云机器学习服务助力足球赛事科学预测

    要完成以下两步准备工作:注册华为云账号,并通过实名认证。开通机器学习服务权限。3.1数据理解数据集的具体字段如下:数据集部分样本数据:3.2建模首先需要用上述数据进行建模,建模算法使用随机决策森林分类。步骤1:登录MLS实例,单击模板“足球赛事预测”的“创建项目”,创建项目,命名为“zqs-shj”

    作者: 云小器
    7664
    3
  • 机器学习 问题分类

      问题分类  我们希望在机器学习算法分类的基础上更具体一些,一种方法是通过分析机器学习任务能解决的问题类型,对任务进行细化:  分类  一种监督学习问题,其中要学习的答案是有限多个可能值之一;例如,在信用卡示例中,该算法必须学习如何在“欺诈”与“诚信”之间找到正确的答案,在仅有

    作者: 我就是豆豆
    428
    0
  • 经典机器学习算法

    经典机器学习算法源自1950年代的纯统计学。统计学家们解决的是诸如寻找数字中的模式、估计数据点间的距离以及计算向量方向这样的形式数学(formal math)问题。 今天,一半的互联网都在研究这些算法。当你看到一列“继续阅读”的文章,或者在某个偏僻的加油站发现自己的银行卡被锁定而

    作者: yyy7124
    828
    1
  • MLS解决方案大片】华为云机器学习服务-预测性维护解决方案大片来袭!

    华为云机器学习服务MLS)预测性维护解决方案介绍尊敬的华为云客户:       华为云机器学习服务(Machine Learning Service,简称MLS)的解决方案视频上线啦!更多视觉体验请您点击以下图片了解详情。感谢您对华为云的支持!

    作者: 云小器
    7825
    3
  • 机器学习和数学

    机器学习理论是一个涵盖统计、概率、计算机科学和算法方面的领域,该理论的初衷是以迭代方式从数据中学习,找到可用于构建智能应用程序的隐藏洞察。尽管机器学习和深度学习有巨大的发展潜力,但要深入掌握算法的内部工作原理并获得良好的结果,就必须透彻地了解许多技术的数学原理。搞清楚这些数学原理

    作者: 黄生
    639
    3
  • 机器学习

    机器学习常见的分类有3种:监督学习:利用一组已知类别的样本调整分类器的参数,使其达到所要求性能的过程,也称为监督训练或有教师学习。常见的有回归和分类。非监督学习:在未加标签的数据中,试图找到隐藏的结构。常见的有聚类。强化学习:智能系统从环境到行为映射的学习,以使奖励信号(强化信号)函数值最大。

    作者: 重中之重做
    633
    4
  • 机器学习的几种常见算法

    估计算法。深度学习深度学习(DL,Deep Learning)是机器学习(ML,Machine Learning)领域中一个新的研究方向,它被引入机器学习使其更接近于最初的目标——人工智能(AI,Artificial Intelligence)。深度学习学习样本数据的内在规律和

    作者: 运气男孩
    471
    1
  • 【大数据分析&机器学习】分布式机器学习

    剧增,会带来很多性能和算法设计问题,单台机器难以胜任,需要分布式的机器学习架构。本文主要介绍分布式机器学习基础知识,并介绍主流的分布式机器学习框架,结合实例介绍一些机器学习算法。 一、分布式机器学习基础 分布式机器学习中的一些核心问题: (1)如何提高各分布式任务节点之间的网络传输效率;

    作者: Francek Chen
    发表时间: 2024-11-26 11:52:04
    717
    0
  • 《AI安全之对抗样本入门》—2 打造对抗样本工具箱

    第2章打造对抗样本工具箱对抗样本是深度学习领域一个新兴的热点内容,非常强调理论和工程相结合。在开启新的学习旅途之前,我们先介绍一下对抗样本环境的搭建过程,强烈建议读者在Linux或者Mac环境下进行搭建,因为深度学习的常用工具几乎都是基于Python开发的,但是Python相关的

    作者: 华章计算机
    发表时间: 2019-06-17 17:47:40
    5319
    0
  • AI平台ModelArts资源

    获取海量开发者技术资源、工具 开发者计划 使能开发者基于开放能力进行技术创新 开发支持 专业高效的开发者在线技术支持服务 开发者学堂 云上学习、实验、认证的知识服务中心 开发者活动 开发者实训、热门活动专区 社区论坛 专家技术布道、开发者交流分享的平台 文档下载 AI平台ModelArts文档下载