检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
驱动、软硬协同、人机协同的生产运营新模式。算盘有一个庞大丰富的组件库,即若干被封装的功能模块,包含数据采集(硬件接入、数据库读写等)、数据处理(数据清洗、统计分析等)、工业机理(工控驱动、图像处理、信号分析、规则引擎、建模仿真等)、AI(特征工程、机器学习、深度学习)等组件包,可
本文分享5篇CVPR2019中发表的关于小样本学习方法的论文,内容涉及小样本识别,小样本检测,小样本分割。1586747871743038977.jpg1586747872496038078.jpg1586747872873017041.jpg1586747872941034415
零样本学习(zero-shot learning, ZSL)的关键挑战是如何推断已见类的视觉特征和属性特征之间的潜在语义知识,从而实现对未见类的知识迁移。以往的研究要么简单地将图像的整体特征与其关联的类语义向量对齐,要么利用单向注意学习有限的潜在语义表示,无法有效地发现视觉特征与
14:图像中目标框的面积占比与训练数据集的特征分布存在较大偏移。 15:图像中目标框的边缘化程度与训练数据集的特征分布存在较大偏移。 16:图像中目标框的亮度与训练数据集的特征分布存在较大偏移。 17:图像中目标框的清晰度与训练数据集的特征分布存在较大偏移。 18:图像中目标框的堆叠程度与训练数据集的特征分布存在较大偏移。
信号的样本熵序列计算 样本熵(Sample Entropy,SampEn)是通过度量信号中产生新模式的概率大小来衡量时间序列复杂性,新模式产生的概率越大,序列的复杂性就越大。样本熵的值越低,序列自我相似性就越高;样本熵的值越大,样本序列就越复杂。样本熵适合于对随机过程的研究,目前
新样本后怎么添加自动学习的模型中?
第2章打造对抗样本工具箱对抗样本是深度学习领域一个新兴的热点内容,非常强调理论和工程相结合。在开启新的学习旅途之前,我们先介绍一下对抗样本环境的搭建过程,强烈建议读者在Linux或者Mac环境下进行搭建,因为深度学习的常用工具几乎都是基于Python开发的,但是Python相关的库都是在
深度学习模型被证明存在脆弱性并容易遭到对抗样本的攻击,但目前对于对抗样本的研究主要集中在计算机视觉领 域而忽略了自然语言处理模型的安全问题.针对自然语言处理领域同样面临对抗样本的风险,在阐明对抗样本相关概念的基 础上,文中首先对基于深度学习的自然语言处理模型的复杂结构、难以探知的训练过程和朴素的基本原理等脆弱性成因进行分析
14:图像中目标框的面积占比与训练数据集的特征分布存在较大偏移。 15:图像中目标框的边缘化程度与训练数据集的特征分布存在较大偏移。 16:图像中目标框的亮度与训练数据集的特征分布存在较大偏移。 17:图像中目标框的清晰度与训练数据集的特征分布存在较大偏移。 18:图像中目标框的堆叠程度与训练数据集的特征分布存在较大偏移。
14:图像中目标框的面积占比与训练数据集的特征分布存在较大偏移。 15:图像中目标框的边缘化程度与训练数据集的特征分布存在较大偏移。 16:图像中目标框的亮度与训练数据集的特征分布存在较大偏移。 17:图像中目标框的清晰度与训练数据集的特征分布存在较大偏移。 18:图像中目标框的堆叠程度与训练数据集的特征分布存在较大偏移。
介绍了常见的白盒攻击算法,从最基础的FGSM、DeepFool到经典的JSMA和CW。第6章介绍了常见的黑盒攻击算法。第7章介绍了对抗样本在目标识别领域的应用。第8章介绍了对抗样本的常见抵御算法,与对抗样本一样,抵御对抗样本的技术也非常有趣。第9章介绍了常见的对抗样本工具以及如何搭建NIPS
类别上样本的特性。该方法在确定分类决策上只依据最邻近的一个或者几个样本的类别来决定待分样本所属的类别。 kNN方法在类别决策时,只与极少量的相邻样本有关。由于kNN方法主要靠周围有限的邻近的样本,而不是靠判别类域的方法来确定所属类别的,因此对于类域的交叉或重叠较多的待分样本集来说
比如上面例子,其实属性很少, 同样属性的可以是一条小狗,而小狗对应的也是空间中的一个假设。 学习算法中,对某些属性可能更加有“偏好”,或者说更加在乎,给的权重更大,这将导致我们学习得到的模型更偏向于某种情况。比如假如算法给定只要是“白色”,那是一只猫的概率更大,这就是机器学习过程中对某种类型假设的偏好,称为“归纳偏好”
习。在零样本学习中,机器可以利用生成式模型来生成新的样本数据,从而弥补样本不足的问题。例如,在图像识别中,可以通过生成式模型生成新的图像样本,从而提高对新类别的识别和分类能力。 零样本学习的未来展望 零样本学习作为人工智能领域的重要研究方向,具有广阔的发展前景。随着技术的不断进步
1)通过样本重建前后差异比较,异常样本重建前后差异大,确定测试样本是否异常 2)样本Encoder隐空间的差异比较,确定样本是否异常
对训练样本及权重,找到一个弱分类器;计算出这个弱分类器的错误率ε与权重α;对正确分类的样本,降低其权重,对错误分类的样本,提升其权重;返回2不断迭代,直至弱分类器数量足够;其中错误率ε定义为分错的样本数除以总样本数。权重α定义为:权重提升与降低的公式如下:对未知样本分类时,用每个
工智能的研究是从以“推理”为重点到以“知识”为重点,再到以“学习”为重点,一条自然、清晰的脉络。机器学习是实现人工智能的一个途径,即以机器学习为手段解决人工智能中的问题。机器学习算法是一类从数据中自动分析获得规律(模型),并利用规律对未知数据进行预测的算法2.机器学习的分类 目
工智能的研究是从以“推理”为重点到以“知识”为重点,再到以“学习”为重点,一条自然、清晰的脉络。机器学习是实现人工智能的一个途径,即以机器学习为手段解决人工智能中的问题。机器学习算法是一类从数据中自动分析获得规律(模型),并利用规律对未知数据进行预测的算法2.机器学习的分类 目
工智能的研究是从以“推理”为重点到以“知识”为重点,再到以“学习”为重点,一条自然、清晰的脉络。机器学习是实现人工智能的一个途径,即以机器学习为手段解决人工智能中的问题。机器学习算法是一类从数据中自动分析获得规律(模型),并利用规律对未知数据进行预测的算法2.机器学习的分类 目
1.3.5 AlexNet的结构AlexNet是2012年发表的经典之作,并在当年取得了ImageNet最好成绩,其官方提供的数据模型,准确率达到57.1%,top 1-5达到80.2%。这对于传统的机器学习分类算法而言,已经相当出色了。AlexNet一共由8层组成,其中包括3个