检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
device_map="auto", quantization_config=gptq_config) 您还可以使用save_pretrain()方法在本地保存您的量化模型。如果模型是用device_map参数量化的,请确保在保存之前将整个模型移动到GPU或CPU。例如,要将模型保存在CPU上。
Open-Clip基于DevServer适配PyTorch NPU训练指导 Open-Clip广泛应用于AIGC和多模态视频编码器的训练。 方案概览 本方案介绍了在ModelArts的DevServer上使用昇腾NPU计算资源开展Open-clip训练的详细过程。完成本方案的部署
device_map="auto", quantization_config=gptq_config) 您还可以使用save_pretrain()方法在本地保存您的量化模型。如果模型是用device_map参数量化的,请确保在保存之前将整个模型移动到GPU或CPU。例如,要将模型保存在CPU上。
登录OBS管理控制台,在ModelArts同一区域内创建桶。如果已存在可用的桶,需确保OBS桶与ModelArts在同一区域。 参考上传文件,将本地数据上传至OBS桶中。如果您的数据较多,推荐OBS Browser+上传数据或上传文件夹。上传的数据需满足此类型自动学习项目的数据集要求。
device_map="auto", quantization_config=gptq_config) 您还可以使用save_pretrain()方法在本地保存您的量化模型。如果模型是用device_map参数量化的,请确保在保存之前将整个模型移动到GPU或CPU。例如,要将模型保存在CPU上。
device_map="auto", quantization_config=gptq_config) 您还可以使用save_pretrain()方法在本地保存您的量化模型。如果模型是用device_map参数量化的,请确保在保存之前将整个模型移动到GPU或CPU。例如,要将模型保存在CPU上。
device_map="auto", quantization_config=gptq_config) 您还可以使用save_pretrain()方法在本地保存您的量化模型。如果模型是用device_map参数量化的,请确保在保存之前将整个模型移动到GPU或CPU。例如,要将模型保存在CPU上。
device_map="auto", quantization_config=gptq_config) 您还可以使用save_pretrain()方法在本地保存您的量化模型。如果模型是用device_map参数量化的,请确保在保存之前将整个模型移动到GPU或CPU。例如,要将模型保存在CPU上。
#安装opencompass脚本 ├──vllm_api.py #启动vllm api服务器 ├──vllm.py #构造vllm评测配置脚本名字 相关文档 和本文档配套的模型训练文档请
u、ceval。 service_url:服务接口地址,若服务部署在notebook中,该地址为"http://127.0.0.1:${port}/v1/completions";若服务部署在生产环境中,该地址由API接口公网地址与"/v1/completions"拼接而成,部署
odelArts自动学习页面中,添加或删除数据。 添加文件 在“未标注”页签下,可单击页面左上角的“添加数据”,您可以在弹出对话框中,选择本地文件上传。 上传文件格式需满足文本分类型的数据集要求。 删除文本对象 在“已标注”页签或“未标注”页签下,选中需要删除的文本对象,单击页面
务的网络有隔离,则访问机器的外网地址需要在主流搜索引擎中搜索“IP地址查询”获取,而不是使用ipconfig或ifconfig/ip命令在本地查询。 图4 查询外网IP地址 父主题: 管理Notebook实例
也可以放到OBS并行文件系统中。 Summary数据上传到Notebook路径/home/ma-user/work/下的方式,请参见上传本地文件至JupyterLab。 Summary数据如果是通过OBS并行文件系统挂载到Notebook中,请将模型训练时产生的Summary文
登录OBS管理控制台,在ModelArts同一区域内创建桶。如果已存在可用的桶,需确保OBS桶与ModelArts在同一区域。 参考上传文件,将本地数据上传至OBS桶中。如果您的数据较多,推荐OBS Browser+上传数据或上传文件夹。上传的数据需满足此类型自动学习项目的数据集要求。
# 推理工具 代码上传至OBS 将AscendSpeed代码包AscendCloud-LLM-xxx.zip在本地解压缩后,将llm_train文件上传至OBS中。 结合准备数据、准备权重、准备代码,将数据集、原始权重、代码文件都上传至OBS后,OBS桶的目录结构如下。
add命令。在左下方输入本次提交的Message,单击“Commit”,相当于执行了git commit命令。 图8 提交修改内容 此时,可以在“History”页签下看到本地提交已成功。 图9 查看是否提交成功 单击“push”按钮,相当于执行git push命令,即可提交代码到GitHub仓库中。提交成功后会提示“Successfully
数据输入通道名称。 description String 数据输入通道描述信息。 local_dir String 数据输入通道映射的容器本地路径。 remote InputDataInfo object 数据实际输入信息。 remote_constraint Array of objects
法的输入输出管道。可以按照实例指定“data_url”和“train_url”,在代码中解析超参分别指定训练所需要的数据文件本地路径和训练生成的模型输出本地路径。 “job_config”字段下的“parameters_customization”表示是否支持自定义超参,此处填true。
常用操作指导可参见JupyterLab操作指导:JupyterLab常用功能介绍。 由于CodeLab的存储为系统默认路径,在使用“上传文件”或“下载文件至本地”时,只能使用JupyterLab页面提供的功能。 如需使用大文件上传和下载的功能,建议您前往Notebook,创建一个收费的实例进行使用。
之后进行服务测试的操作步骤。 模型部署完成后,“在服务部署”节点,单击“实例详情”按钮,进入服务预测界面,在“预测”页签单击“上传”,选择本地图片进行测试。 单击“预测”进行测试,预测完成后,右侧“预测结果”区域输出标签名称“sunflowers”和检测的评分。如模型准确率不满足