检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
--port表示服务部署的端口。每个全量/增量推理实例基于配置的端口号(--port)启动服务,并按照global rank_table中的全量实例、增量实例的顺序,对全量推理实例、增量推理实例启动的端口号进行排序,端口之间用`,`分隔开作为该环境变量的输入。当前端口9000是对
--port表示服务部署的端口。每个全量/增量推理实例基于配置的端口号(--port)启动服务,并按照global rank_table中的全量实例、增量实例的顺序,对全量推理实例、增量推理实例启动的端口号进行排序,端口之间用`,`分隔开作为该环境变量的输入。当前端口9000是对
--port表示服务部署的端口。每个全量/增量推理实例基于配置的端口号(--port)启动服务,并按照global rank_table中的全量实例、增量实例的顺序,对全量推理实例、增量推理实例启动的端口号进行排序,端口之间用`,`分隔开作为该环境变量的输入。当前端口9000是对
如果上述软件获取路径打开后未显示相应的软件信息,说明您没有下载权限,请联系您所在企业的华为方技术支持下载获取。 支持的特性 表1 本版本支持的特性说明 分类 软件包特性说明 参考文档 三方大模型,包名:AscendCloud-LLM 支持如下模型适配PyTorch-NPU的训练(ModelLink)
ion的block大小,推荐设置为128。 --host=${docker_ip}:服务部署的IP,${docker_ip}替换为宿主机实际的IP地址。 --port:服务部署的端口。 --gpu-memory-utilization:NPU使用的显存比例,复用原vLLM的入参名称,默认为0
每个输出序列要生成的最大tokens数量。 top_k 否 -1 Int 控制要考虑的前几个tokens的数量的整数。设置为-1表示考虑所有tokens。 适当降低该值可以减少采样时间。 top_p 否 1.0 Float 控制要考虑的前几个tokens的累积概率的浮点数。必须在 (0, 1] 范围内。设置为1表示考虑所有tokens。
静态性能测试:评估在固定输入、固定输出和固定并发下,模型的吞吐与首token延迟。该方式实现简单,能比较清楚的看出模型的性能和输入输出长度、以及并发的关系。 动态性能测试:评估在请求并发在一定范围内波动,且输入输出长度也在一定范围内变化时,模型的延迟和吞吐。该场景能模拟实际业务下动态的发送不同长度请求,能评估推理框架在实际业务中能支持的并发数。
静态性能测试:评估在固定输入、固定输出和固定并发下,模型的吞吐与首token延迟。该方式实现简单,能比较清楚的看出模型的性能和输入输出长度、以及并发的关系。 动态性能测试:评估在请求并发在一定范围内波动,且输入输出长度也在一定范围内变化时,模型的延迟和吞吐。该场景能模拟实际业务下动态的发送不同长度请求,能评估推理框架在实际业务中能支持的并发数。
静态性能测试:评估在固定输入、固定输出和固定并发下,模型的吞吐与首token延迟。该方式实现简单,能比较清楚的看出模型的性能和输入输出长度、以及并发的关系。 动态性能测试:评估在请求并发在一定范围内波动,且输入输出长度也在一定范围内变化时,模型的延迟和吞吐。该场景能模拟实际业务下动态的发送不同长度请求,能评估推理框架在实际业务中能支持的并发数。
enable_lora=True表示开启multi-lora的精度验证。如果不开启multi-lora的精度验证,不体现enable_lora参数即可。 lora_local_path=${lora_local_path}是挂载适配器对应路径,取值和multi-lora特性使用说明中的参数lora1=/path/
Browser+上传数据或上传文件夹。上传的数据需满足此类型自动学习项目的数据集要求。 在上传数据时,请选择非加密桶进行上传,否则会由于加密桶无法解密导致后期的训练失败。 用于训练的图片,至少有1种以上的分类,每种分类的图片数不少50张。 创建数据集 数据准备完成后,需要创建相应项目支持的类型的数据集,具体操作请参考创建ModelArts数据集。
906-xxx.zip到主机中,包获取路径请参见表2。 将权重文件上传到DevServer机器中。权重文件的格式要求为Huggingface格式。开源权重文件获取地址请参见表3。 如果使用模型训练后的权重文件进行推理,需要上传训练后的权重文件和开源的原始权重文件。模型训练及训练后的权重文件转
也可以准确判断和学习到使用者的偏好,最后,DPO算法还可以与其他优化算法相结合,进一步提高深度学习模型的性能。 RM奖励模型(Reward Model):是强化学习过程中一个关键的组成部分。它的主要任务是根据给定的输入和反馈来预测奖励值,从而指导学习算法的方向,帮助强化学习算法更有效地优化策略
否则会导致无法获取到相关数据。 数据集要求 预测分析项目中需要使用到的数据集为表格数据集,数据格式支持csv格式。表格数据集的具体介绍请参见表格数据集。 将原始.xlsx格式的数据转换为.csv格式的数据的方法如下: 将原始表格数据(.xlsx)另存。单击“文件>另存为”,选择
ion的block大小,推荐设置为128。 --host=${docker_ip}:服务部署的IP,${docker_ip}替换为宿主机实际的IP地址。 --port:服务部署的端口。 --gpu-memory-utilization:NPU使用的显存比例,复用原vLLM的入参名称,默认为0
如果是“按需计费”的资源池,您可单击操作列的“删除”,即可实现对单个节点的资源释放。 如果想批量删除节点,勾选待删除节点名称前的复选框,然后单击名称上方的“删除”,即可实现对多个节点的资源释放。 如果是“包年/包月”且资源未到期的资源池,您可单击操作列的“退订”,即可实现对单个节点的资源释放。
静态性能测试:评估在固定输入、固定输出和固定并发下,模型的吞吐与首token延迟。该方式实现简单,能比较清楚的看出模型的性能和输入输出长度、以及并发的关系。 动态性能测试:评估在请求并发在一定范围内波动,且输入输出长度也在一定范围内变化时,模型的延迟和吞吐。该场景能模拟实际业务下动态的发送不同长度请求,能评估推理框架在实际业务中能支持的并发数。
开启图模式后,服务第一次响应请求时会有一个较长时间的图编译过程,并且会在当前目录下生成.torchair_cache文件夹来保存图编译的缓存文件。当服务第二次启动时,可通过缓存文件来快速完成图编译的过程,避免长时间的等待,并且基于图编译缓存文件来启动服务可获得更优的推理性能,因此请在有图编译缓存文件的前提下启动服务
也可以准确判断和学习到使用者的偏好,最后,DPO算法还可以与其他优化算法相结合,进一步提高深度学习模型的性能。 RM奖励模型(Reward Model):是强化学习过程中一个关键的组成部分。它的主要任务是根据给定的输入和反馈来预测奖励值,从而指导学习算法的方向,帮助强化学习算法更有效地优化策略
906-xxx.zip中的AscendCloud-AIGC-6.3.906-xxx.zip文件。获取路径:Support-E。 如果没有软件下载权限,请联系您所在企业的华为方技术支持下载获取。 代码包文件名中的xxx表示具体的时间戳,以包名的实际时间为准。 Step1 准备环境