检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
数据源的数据格式和近线数据导入的格式要求一致,包括用户数据、物品数据和行为数据。 用户数据 用户数据包括数据源中的“用户属性表”和用于近线计算的“用户画像”数据。用户数据记录用户的属性信息,例如地域、爱好等。 物品数据 物品数据包括数据源中的“物品属性表”和用于近线计算的“物品画
请参见获取项目名称、项目ID、区域ID。 获取需要上传通道的ID(streamId)。 单击近线数据源的“详情” 图1 获取通道ID 上传实时数据,示例代码如下,其中,“streamId”的配置值要与步骤2中“通道ID”的值一致。 1 2 3 4 5 6 7 8
cluster_name 是 String 集群名称。 status 否 String 集群状态。 is_register 否 Boolean 是否注册。 示例 成功响应示例 { "is_success": true, "clusters": [ {
cluster_name 是 String 集群名称。 status 否 String 集群状态。 is_register 否 Boolean 是否注册。 示例 成功响应示例 { "is_success": true, "connections": [ {
workspace_id String 工作空间编号。 data_config DataConfig object 数据配置。 specs_config SpecsConfig object 计算规格配置。 created_at String 创建时间。 update_at Long 更新时间。
object 数据源配置。 scene_name 是 String 场景名称,1-64位的字母、数字、下划线、中划线组合。 最小长度:1 最大长度:64 specs_config 是 SpecsConfig object 计算规格。 type 是 String 场景类型: UI,基于用户推荐物品
在“test-data”文件夹下,将behavior.txt中的每条数据的actionTime字段的值修改到当前时间附近。将item.txt中的每条数据的publishTime字段的值修改到当前时间附近,将item.txt中的每条数据的expireTime字段的值修改成大于当前时间的值,避免数据因为过期被过滤掉。
特征名称:值为时间戳(10位)的特征的名称,任务会根据此特征对候选集进行排序。 推荐天数:推荐数据的时间段,该时间段从当前开始往前推N天,默认15天。 默认热度排序。 候选集最大长度 生成候选集的最大长度,每次计算更新的候选集中的个数不会超过最大值。 默认50。 候选集的召回策略 召回候选集的策略。
最小长度:1 最大长度:64 specs_config 是 SpecsConfig object 计算规格。 schedule 否 String 调度信息。 job_configs 是 jobConfig object 作业配置。 表5 SpecsConfig 参数 是否必选 参数类型
“添加推荐候选集”(选择离线或近线任务所生成的推荐候选集进行排序) 任务别名和UUID:单击操作列表的“选择”添加离线或近线的任务名称和候选集ID。 优先级:优先级高的推荐结果将确保展示在优先级低的之前。 同优先级数据占比:优先级相同的推荐候选集,该占比展示推荐数量,同优先级下的数据占比之和需要等于100%。
用户根据场景选择不同的推荐实体。 独立的排序模块 独立的基于CTR预估的排序打分模块,支持个性化排序能力。 如何访问RES 您可以通过以下任何一种方式访问RES。 管理控制台 管理控制台是基于浏览器的可视化界面。通过管理控制台,您可以使用直观的界面进行相应的操作。使用方式请参见《推荐系统用户指南》。
1]之间,是机器学习领域里常用的二分类算法。LR算法参数请参见逻辑斯蒂回归。 因子分解机算法是一种基于矩阵分解的机器学习算法,能够自动进行二阶特征组合、学习特征之间的关系,无需人工经验干预,同时能够解决组合特征稀疏的问题。FM算法参数请参见因子分解机。 域感知因子分解机是因子分解机的改进版本,因子
华为云管理控制台。 图1 控制台入口 在控制台右上角的帐户名下方,单击“我的凭证”,进入“我的凭证”页面。 图2 我的凭证 在“我的凭证”页面,选择“访问密钥>新增访问密钥”,如图3所示。 图3 单击新增访问密钥 填写该密钥的描述说明,单击“确定”。根据提示单击“立即下载”,下载密钥。
对结果保存路径中已有宽表数据的保留方式: 否,不保留任何已有的数据。 是,保留全部已有的数据。 覆盖,将相同日期下的数据覆盖掉,保留不同日期下的数据。 结果保存路径 行为-用户-物品(通用格式)的保存路径。 说明: 使用初始用户画像-物品画像-标准宽表生成的数据时,其路径具体到文件夹即可。 结果存储平台
您可以根据业务需要,选择合适的召回策略。召回策略用于配置离线计算逻辑,通过启动离线计算任务进行候选推荐结果集的生成。 各个召回策略的详细参数设置和输入输出请单击下方链接查看。 基于特定行为热度推荐 基于综合行为热度推荐 基于物品的协同过滤推荐 基于用户的协同过滤推荐 基于交替最小二乘的矩阵分解推荐
“在线服务”,进入服务列表页面。 单击目标服务名称进入服务详情页面,单击下方的“预测”页签,输入预测代码,单击“预测”后显示预测结果,如图1所示。输入用户ID和推荐数量,根据您设置的召回策略等返回用户的预测结果。 图1 在线预测 获取预测接口 通过在线服务页面获取接口 登录RES
数值稳定常量:为保证数值稳定而设置的一个微小常量。默认1e-8。 adagrad:自适应梯度算法 对每个不同的参数调整不同的学习率,对频繁变化的参数以更小的步长进行更新,而稀疏的参数以更大的步长进行更新。 学习率:优化算法的参数,决定优化器在最优方向上前进步长的参数。默认0.001。 初
进入“新增访问密钥”页面,输入当前用户的登录密码,通过已验证手机或已验证邮箱进行验证,输入对应的验证码,如图4所示。 图4 新增访问密钥 单击“确定”,根据浏览器提示,保存密钥文件。密钥文件会直接保存到浏览器默认的下载文件夹中。打开名称为“credentials.csv”的文件,即可查看访问密钥(Access
UserCF算法生成的用户-物品列表候选集。 基于交替最小二乘的矩阵分解推荐 基于交替最小二乘的矩阵分解推荐:基于用户-物品的行为信息作为原始矩阵,利用ALS优化算法对原始矩阵进行矩阵分解,分解之后的用户隐向量矩阵和物品隐向量矩阵可以用来生成预估的新的用户-物品评分矩阵,提取出评分最高的若干个物品作为召回结果。
介绍几个Go语言及相关开源框架的插件机制 跟唐老师学习云网络 唐老师将自己对网络的理解分享给大家 智能客服 您好!我是有问必答知识渊博的的智能问答机器人,有问题欢迎随时求助哦! 社区求助 华为云社区是华为云用户的聚集地。这里有来自容器服务的技术牛人,为您解决技术难题。