检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
帮助用户解析SQL语句中的UDF参数。 配置UDF运行时必要的信息,即指定UDF访问原始数据时采取的策略和输出结果序列的类型。 创建资源,比如建立外部链接,打开文件等。 UDFParameters UDFParameters的作用是解析SQL语句中的UDF参数(SQL中UDF函
在启用Adaptive Execution特性前,Spark SQL根据RBO和CBO的优化结果创建执行计划,此种方法忽略了数据在运行过程中的结果集变化。比如基于某个大表创建的视图,与其他大表join时,即便视图的结果集很小,也无法将执行计划调整为BroadcastJoin。启用Adaptive
在启用Adaptive Execution特性前,Spark SQL根据RBO和CBO的优化结果创建执行计划,此种方法忽略了数据在运行过程中的结果集变化。比如基于某个大表创建的视图,与其他大表join时,即便视图的结果集很小,也无法将执行计划调整为BroadcastJoin。启用Adaptive
Clustering都会导致部分或全部数据重写。 列的默认值设置要与列的类型一致,如不一致会进行类型强转,导致默认值精度丢失或者默认值为NULL。 历史数据的默认值与列第一次设置的默认值一致,多次修改列的默认值不会影响历史数据的查询结果。 设置默认值后rollback不能回滚默认值配置。
“指定作业”:表示指定需要导出的作业。选择“指定作业”,在作业列表中勾选需要导出的作业。 “指定组别”:表示导出某个指定分组中的所有作业。选择“指定分组”,在分组列表中勾选需要导出的作业分组。 “是否导出密码”:导出时是否导出连接器密码,勾选时,导出加密后的密码串。 单击“确定”,开
端中保存了大量的已经过期的数据,给状态后端造成了较大的压力。为了减少状态后端的压力,可以单独为左表和右表设置不同的过期时间。不支持where子句。 可通过使用Hint方式单独为左表和右表设置不同的过期时间,如左表(state.ttl.left)设置TTL为60秒,右表(state
分区粒度可以采用年、月、日,分区粒度的目标是减少同时写入的文件桶数,尤其是在有数据量更新,且更新数据有一定时间范围规律的,比如:近一个月的数据更新占比最大,可以按照月份创建分区;近一天内的数据更新占比大,可以按照天进行分区。 采用Bucket索引,写入是通过主键Hash打散的,数据会均匀的写入到分区下每
INSERT INTO参数 参数 描述 tableIndentifier 需要执行INSERT命令的Hudi表的名称。 select query 查询语句。 注意事项 写入模式:Hudi对于设置了主键的表支持三种写入模式,用户可以设置参数hoodie.sql.insert.mode来指定Insert模式,默认为upsert。
当有两个KV的dataset(K,V)和(K,W),返回的是(K,(V,W))的dataset,numPartitions为并发的任务数。 cogroup(other, numPartitions) 将当有两个key-value对的dataset(K,V)和(K,W),返回的是(K,
当有两个KV的dataset(K,V)和(K,W),返回的是(K,(V,W))的dataset,numPartitions为并发的任务数。 cogroup(other, numPartitions) 将当有两个key-value对的dataset(K,V)和(K,W),返回的是(K,
of(5)))中pane的大小为5秒,假设这个窗口为[100, 120),则包含的pane为[100, 105), [105, 110), [110, 115), [115, 120)。 图2 窗口重构示例 当某个数据到来时,并不分配到具体的窗口中,而是根据自己的时间戳计算出该数据所属的pane,并将其保存到对应的pane中。
当有两个KV的dataset(K,V)和(K,W),返回的是(K,(V,W))的dataset,numPartitions为并发的任务数。 cogroup(other, numPartitions) 将当有两个key-value对的dataset(K,V)和(K,W),返回的是(K,
slideInterval) 返回流中滑动窗口元素的个数。 reduceByWindow(func, windowLength, slideInterval) 当调用在DStream的KV对上,返回一个新的DStream的KV对,其中每个Key的Value根据滑动窗口中批次的reduce函数聚合得到。 join(otherStream
slideInterval) 返回流中滑动窗口元素的个数。 reduceByWindow(func, windowLength, slideInterval) 当调用在DStream的KV对上,返回一个新的DStream的KV对,其中每个Key的Value根据滑动窗口中批次的reduce函数聚合得到。 join(otherStream
functions; 结果显示,被drop的function仍然存在,如图2所示。 图2 执行show functions操作后的结果 回答 问题根因: 上述两个问题是由于多主实例模式或者多租户模式下,使用spark-beeline通过add jar的方式创建function,此func
delta_commits的值)。 MOR表下游采用流式计算,历史版本保留小时级。 如果MOR表的下游是流式计算,例如Flink流读,可以按照业务需要保留小时级的历史版本,这样的话近几个小时之内的增量数据可以通过log文件读出,如果保留时长过短,下游flink作业在重启或者异常中断阻塞的情况下,上
functions; 结果显示,被drop的function仍然存在,如图2所示。 图2 执行show functions操作后的结果 回答 问题根因: 上述两个问题是由于多主实例模式或者多租户模式下,使用spark-beeline通过add jar的方式创建function,此func
30%以上的数据),建议使用coalesce算子,手动减少RDD的partition数量,将RDD中的数据压缩到更少的partition中去。因为filter之后,RDD的每个partition中都会有很多数据被过滤掉,此时如果照常进行后续的计算,其实每个task处理的parti
、B表都有个名为name的列。对A、B表进行join操作。 估计表的大小。 根据每次加载数据的大小,来估计表大小。 也可以在Hive的数据库存储路径下直接查看表的大小。首先在Spark的配置文件“hive-site.xml”中,查看Hive的数据库路径的配置,默认为“/user/hive/warehouse”。
当有两个KV的dataset(K,V)和(K,W),返回的是(K,(V,W))的dataset,numPartitions为并发的任务数。 cogroup(other, numPartitions) 将当有两个key-value对的dataset(K,V)和(K,W),返回的是(K,