检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
total Integer 查询到当前用户名下的所有算法总数。 count Integer 查询到当前用户名下的所有符合查询条件的算法总数。 limit Integer 查询到当前用户名下的所有算法限制个数。 offset Integer 查询到当前用户名下的所有算法查询偏移量。 sort_by
# 训练需要的启动脚本 # 以下目录结构,用户自己创建 |── training_data #原始数据目录,需要用户手动创建并上传,后续操作步骤中会提示 ├── tr
/scripts/llama2/0_pl_sft_13b.sh 选择用户自己的专属资源池,以及规格与节点数。防止训练过程中出现内存溢出的情况,用户可参考表2进行配置。 图2 选择资源池规格 新增SFS Turbo挂载配置,并选择用户创建的SFS Turbo文件系统。 云上挂载路径:输入镜像容器中的工作路径
/scripts/llama2/0_pl_lora_13b.sh 选择用户自己的专属资源池,以及规格与节点数。防止训练过程中出现内存溢出的情况,用户可参考表2进行配置。 图2 选择资源池规格 新增SFS Turbo挂载配置,并选择用户创建的SFS Turbo文件系统。 云上挂载路径:输入镜像容器中的工作路径
重转换的过程。 若用户进行自定义数据集预处理以及权重转换,可通过编辑 1_preprocess_data.sh 、2_convert_mg_hf.sh 中的具体python指令运行。本代码中有许多环境变量的设置,在下面的指导步骤中,会展开进行详细的解释。 若用户希望自定义参数进行
)的训练脚本,并可通过不同模型中的训练脚本一键式运行。训练脚本可判断是否完成预处理后的数据和权重转换的模型。如果未完成,则执行脚本,自动完成数据预处理和权重转换的过程。 如果用户进行自定义数据集预处理以及权重转换,可通过Notebook环境编辑 1_preprocess_data.sh 、2_convert_mg_hf
据实际规划修改。用户根据训练情况二选一; USER_PROCESSED_DATA_DIR /home/ma-user/work/process_data 【可选】如已有预处理完成数据可指定此目录,训练过程中会优先加载此目录,跳过数据预处理过程;默认无此参数,用户自定义自行添加 ORIGINAL_HF_WEIGHT
)的训练脚本,并可通过不同模型中的训练脚本一键式运行。训练脚本可判断是否完成预处理后的数据和权重转换的模型。如果未完成,则执行脚本,自动完成数据预处理和权重转换的过程。 如果用户进行自定义数据集预处理以及权重转换,可通过Notebook环境编辑 1_preprocess_data.sh 、2_convert_mg_hf
动完成数据预处理和权重转换的过程。 如果用户进行自定义数据集预处理以及权重转换,可通过编辑 1_preprocess_data.sh 、2_convert_mg_hf.sh中的具体python指令,并在Notebook环境中运行执行。用户可通过Notebook中创建.ipynb文
自动完成数据预处理和权重转换的过程。 若用户进行自定义数据集预处理以及权重转换,可通过编辑 1_preprocess_data.sh 、2_convert_mg_hf.sh中的具体python指令,并在Notebook环境中运行执行。用户可通过Notebook中创建.ipynb文
换的过程。 如果用户进行自定义数据集预处理以及权重转换,可通过编辑 1_preprocess_data.sh 、2_convert_mg_hf.sh 中的具体python指令运行。本代码中有许多环境变量的设置,在下面的指导步骤中,会展开进行详细的解释。 如果用户希望自定义参数进行
ModelArts团队标注的数据分配机制是什么? 目前不支持用户自定义成员任务分配,数据是平均分配的。 当数量和团队成员人数不成比例,无法平均分配时,则将多余的几张图片,随机分配给团队成员。 如果样本数少于待分配成员时,部分成员会存在未分配到样本的情况。样本只会分配给labele
本教程使用到的训练数据集是Alpaca数据集。您也可以自行准备数据集。 Alpaca数据集 本教程使用Alpaca数据集,数据集的介绍及下载链接如下。 Alpaca数据集是由OpenAI的text-davinci-003引擎生成的包含52k条指令和演示的数据集。这些指令数据可以用来
本教程使用到的训练数据集是Alpaca数据集。您也可以自行准备数据集。 Alpaca数据集 本教程使用Alpaca数据集,数据集的介绍及下载链接如下。 Alpaca数据集是由OpenAI的text-davinci-003引擎生成的包含52k条指令和演示的数据集。这些指令数据可以用来
LLama-Factory ShareGPT指令微调数据:ShareGPT 格式来源于通过记录 ChatGPT 与用户对话的数据集,主要用于对话系统的训练。它更侧重于多轮对话数据的收集和组织,模拟用户与 AI 之间的交互。数据集包含有以下字段: conversations:包含一系列对话对象,每个
LLama-Factory ShareGPT指令微调数据:ShareGPT 格式来源于通过记录 ChatGPT 与用户对话的数据集,主要用于对话系统的训练。它更侧重于多轮对话数据的收集和组织,模拟用户与 AI 之间的交互。数据集包含有以下字段: conversations:包含一系列对话对象,每个
准备数据 本教程使用到的训练数据集是Alpaca数据集。您也可以自行准备数据集。 数据集下载 本教程使用Alpaca数据集,数据集的介绍及下载链接如下。 Alpaca数据集是由OpenAI的text-davinci-003引擎生成的包含52k条指令和演示的数据集。这些指令数据可以用来
准备数据 本教程使用到的训练数据集是Alpaca数据集。您也可以自行准备数据集。 数据集下载 本教程使用Alpaca数据集,数据集的介绍及下载链接如下。 Alpaca数据集是由OpenAI的text-davinci-003引擎生成的包含52k条指令和演示的数据集。这些指令数据可以用来
本教程使用到的训练数据集是Alpaca数据集。您也可以自行准备数据集。 Alpaca数据集 本教程使用Alpaca数据集,数据集的介绍及下载链接如下。 Alpaca数据集是由OpenAI的text-davinci-003引擎生成的包含52k条指令和演示的数据集。这些指令数据可以用来
本教程使用到的训练数据集是Alpaca数据集。您也可以自行准备数据集。 Alpaca数据集 本教程使用Alpaca数据集,数据集的介绍及下载链接如下。 Alpaca数据集是由OpenAI的text-davinci-003引擎生成的包含52k条指令和演示的数据集。这些指令数据可以用来